当前位置: X-MOL 学术J. Geophys. Res. Planets › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Physical and Chemical Evolution of Lunar Mare Regolith
Journal of Geophysical Research: Planets ( IF 3.9 ) Pub Date : 2020-12-16 , DOI: 10.1029/2020je006634
P. O’Brien 1 , S. Byrne 1
Affiliation  

The lunar landscape evolves both physically and chemically over time due to impact cratering and energetic processes collectively known as space weathering. Despite returned soil samples and global remote sensing reflectance measurements, the rate of space weathering in the lunar regolith is not well understood. To address this, we developed a novel three‐dimensional landscape evolution model to simulate the physical processes that control the burial, excavation, and transport of regolith on airless bodies. Applying this model to the lunar mare, we find that over billions of years of surface evolution, material typically spends only a few million years on the surface where it is exposed to the effects of space weathering. The small surface residence times are a result of vigorous mixing by small‐scale impacts, predominantly driven by secondary crater formation. We deduce the rate of space weathering by comparing our modeled distribution of surface residence times on the lunar mare to measurements of space weathering maturity from Apollo soil samples and orbital surface reflectance datasets. These chemical constraints indicate that soil on the lunar mare reaches maturity in 7 Myr of cumulative surface exposure though due to uncertainties in the rate of small secondary crater production, this timescale could be 2–3 times higher. Weathering progresses more rapidly upon initial exposure to space but the surface residence time required to achieve maturity is realized over billions of years as regolith is repeatedly buried and exposed by small impacts.

中文翻译:

月球母体的理化演化

由于撞击坑和充满活力的过程(统称为空间风化),月球景观会随着时间在物理和化学上发生变化。尽管返回了土壤样本并进行了全球遥感反射率测量,但对月球巨石中空间风化的速率还知之甚少。为了解决这个问题,我们开发了一个新颖的三维景观演化模型,以模拟控制无气物体上go石的埋葬,挖掘和运输的物理过程。将这种模型应用于月球母马,我们发现在数十亿年的表面演化过程中,材料通常仅在暴露于太空风化作用的表面上花费数百万年。较小的表面停留时间是由于小规模撞击而剧烈混合的结果,主要由次生的火山口形成驱动。我们通过比较我们在月球上的表面停留时间的模型分布与从阿波罗土壤样品和轨道表面反射率数据集获得的空间风化成熟度的测量值,来推断空间风化率。这些化学约束条件表明,尽管由于小型次生陨石坑产量的不确定性,月球母马的土壤在7 Myr的累积表面暴露下已达到成熟状态,该时间尺度可能要高出2-3倍。最初暴露于太空后,耐候性发展得更快,但由于粉煤灰被反复掩埋并受到小冲击而暴露,实现成熟所需的表面停留时间已超过数十亿年。通过比较我们在月球母体上的表面停留时间的分布与从阿波罗土壤样品和轨道表面反射率数据集获得的空间风化成熟度的测量值,我们得出了空间风化率。这些化学约束条件表明,尽管由于小型次生陨石坑产量的不确定性,月球母马的土壤在7 Myr的累积表面暴露下已达到成熟状态,该时间尺度可能要高出2-3倍。最初暴露于太空后,耐候性发展得更快,但由于粉煤灰被反复掩埋并受到小冲击而暴露,实现成熟所需的表面停留时间已超过数十亿年。我们通过比较我们在月球上的表面停留时间的模型分布与从阿波罗土壤样品和轨道表面反射率数据集获得的空间风化成熟度的测量值,来推断空间风化率。这些化学约束条件表明,尽管由于小型次生陨石坑产量的不确定性,月球母马的土壤在7 Myr的累积表面暴露下已达到成熟状态,该时间尺度可能要高出2-3倍。最初暴露于太空后,耐候性发展得更快,但由于粉煤灰被反复掩埋并受到小冲击而暴露,实现成熟所需的表面停留时间已超过数十亿年。这些化学约束条件表明,尽管由于次生陨石坑产量的不确定性,月球母马的土壤在7 Myr的累积表面暴露下已达到成熟,但这一时间尺度可能要高出2-3倍。最初暴露于太空后,耐候性发展得更快,但由于粉煤灰被反复掩埋并受到小冲击而暴露,实现成熟所需的表面停留时间已超过数十亿年。这些化学约束条件表明,尽管由于次生陨石坑产量的不确定性,月球母马的土壤在7 Myr的累积表面暴露下已达到成熟,但这一时间尺度可能要高出2-3倍。最初暴露于太空后,耐候性发展得更快,但由于粉煤灰被反复掩埋并受到小冲击而暴露,实现成熟所需的表面停留时间已超过数十亿年。
更新日期:2021-02-24
down
wechat
bug