当前位置: X-MOL 学术Nucl. Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
TOPFLOW pressure chamber – Versatile techniques to simplify design and instrumentation of thermal fluid dynamic experiments at high pressure
Nuclear Engineering and Design ( IF 1.9 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.nucengdes.2020.110971
Horst-Michael Prasser , Uwe Hampel , Peter Schütz

Abstract Thermal hydraulic experiments at system pressures close to the reference reactor are difficult and costly. The pressure chamber technology described in the present paper was developed to improve the accessibility of the test fluid for an application of advanced instrumentation. The main idea consists in accommodating the actual test rig inside a pressure tank and operate it in pressure equilibrium with a filling gas in the chamber. In this way, the walls of the test equipment do not have to be designed as a pressure-bearing boundary. An important feature is a passive approach to maintain the needed very good pressure equilibrium between the fluid in the test setup and the filling gas of the chamber. It is in particular needed in experiments requiring high mass flows of steam supply. Auxiliary systems for pressurizing and cooling the chamber are described. Furthermore, several useful solutions of particular problems are presented, such as the accommodation of delicate devices, like high-speed cameras and infrared cameras, in the pressure chamber, a blurring-free imaging through large observation windows, the sealing of the latter, auxiliary equipment for an efficient handling of the test equipment and the design of penetrations for multiple electric signals through the pressure boundary. Finally, an overview of the experimental programs conducted by now is given, whereby the emphasis is put on examples of measuring results illustrating the potentials of the pressure chamber technology rather than on the scientific output of the given experimental programs.

中文翻译:

TOPFLOW 压力室 – 用于简化高压下热流体动力学实验的设计和仪器的多功能技术

摘要 在接近参考反应堆的系统压力下进行热力水力试验既困难又昂贵。本文中描述的压力室技术的开发是为了提高测试流体的可及性,以用于高级仪器的应用。主要思想在于将实际测试台安装在压力罐内,并在腔室中填充气体的情况下使其在压力平衡下运行。这样,测试设备的壁不必设计为承压边界。一个重要的特征是一种被动方法,可以在测试装置中的流体和腔室的填充气体之间保持所需的非常好的压力平衡。在需要大量蒸汽供应的实验中尤其需要它。描述了用于对腔室加压和冷却的辅助系统。此外,还提出了一些特定问题的有用解决方案,例如在压力室中容纳精密设备,如高速摄像机和红外摄像机,通过大观察窗进行无模糊成像,后者的密封,辅助用于有效处理测试设备的设备以及通过压力边界的多个电信号的穿透设计。最后,对目前进行的实验项目进行了概述,重点放在说明压力室技术潜力的测量结果示例上,而不是给定实验项目的科学输出。提出了一些特殊问题的有用解决方案,例如在压力室中容纳精密设备,如高速摄像机和红外摄像机,通过大观察窗进行无模糊成像,后者的密封,辅助设备测试设备的有效处理和通过压力边界的多个电信号的穿透设计。最后,对目前进行的实验项目进行了概述,重点放在说明压力室技术潜力的测量结果示例上,而不是给定实验项目的科学输出。提出了一些特殊问题的有用解决方案,例如在压力室中容纳精密设备,如高速摄像机和红外摄像机,通过大观察窗进行无模糊成像,后者的密封,辅助设备测试设备的有效处理和通过压力边界的多个电信号的穿透设计。最后,给出了目前进行的实验计划的概述,其中重点放在说明压力室技术潜力的测量结果示例上,而不是给定实验计划的科学输出。通过大观察窗的无模糊成像、后者的密封、用于有效处理测试设备的辅助设备以及通过压力边界的多个电信号的穿透设计。最后,对目前进行的实验项目进行了概述,重点放在说明压力室技术潜力的测量结果示例上,而不是给定实验项目的科学输出。通过大观察窗的无模糊成像、后者的密封、用于有效处理测试设备的辅助设备以及通过压力边界的多个电信号的穿透设计。最后,对目前进行的实验项目进行了概述,重点放在说明压力室技术潜力的测量结果示例上,而不是给定实验项目的科学输出。
更新日期:2021-02-01
down
wechat
bug