当前位置: X-MOL 学术Nano. Commun. Netw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the routing and scalability of MZI-based optical Beneš interconnects
Nano Communication Networks ( IF 2.9 ) Pub Date : 2020-12-15 , DOI: 10.1016/j.nancom.2020.100337
Markos Kynigos , Jose A. Pascual , Javier Navaridas , Mikel Luján , John Goodacre

Silicon Photonic interconnects are a promising technology for scaling computing systems into the exa-scale domain. However, there exist significant challenges in terms of optical losses and complexity. In this work, we evaluate the applicability of a thermally/electrically tuned Beneš network based on Mach–Zehnder Interferometers for on-chip and inter-chip interconnects as regards its scalability. We examine how insertion loss, laser power and switching energy consumption scale with the number of endpoints. In addition, we propose a set of hardware-inspired routing strategies that leverage the inherent asymmetry present in the switching components. We evaluate a range of network sizes, from 16 up to 256 endpoints, using 8 realistic and synthetic workloads and found very promising results. Our routing strategies offer a reduction in path-dependent insertion loss of up to 35% in the best case, as well as a laser power reduction of 31% for 32 endpoints. In addition, bit-switching energy is reduced by between 8% and 15% using the most efficient routing strategy, depending on the communication workload. We also show that workload execution time can be reduced with the best strategies by 5%–25% in some workloads, while the worst-case increases are at most 3%. Using our routing strategies, we show that under the examined technology parameters, a 32-endpoint interconnect can be considered for the NoC domain in terms of insertion loss and laser power, even when using conservative parameters for the modulator.



中文翻译:

基于MZI的光学Beneš互连的路由和可扩展性

硅光子互连是一种有前途的技术,可以将计算系统扩展到Exa级域。然而,在光损耗和复杂性方面存在重大挑战。在这项工作中,我们评估了基于Mach–Zehnder干涉仪的热/电调谐Beneš网络在片上和片间互连方面的可扩展性。我们研究了插入损耗,激光功率和开关能耗如何随端点数量而变化。此外,我们提出了一组受硬件启发的路由策略,这些策略利用了交换组件中固有的不对称性。我们使用8种现实和综合的工作负载,评估了从16个端点到256个端点的一系列网络规模,并发现了非常有希望的结果。在最佳情况下,我们的路由策略可将与路径相关的插入损耗降低多达35%,对于32个端点,激光功率降低了31%。此外,根据通信工作量,使用最有效的路由策略可以将位切换能量减少8%至15%。我们还表明,采用最佳策略,在某些工作负载中可以将工作负载执行时间减少5%–25%,而在最坏情况下,最多可以增加3%。使用我们的路由策略,我们表明,在检查的技术参数下,就算在插入损耗和激光功率方面,NoC域也可以考虑使用32端点互连,即使对调制器使用保守的参数也是如此。使用最有效的路由策略,根据通信工作量,位转换能量可减少8%至15%。我们还表明,采用最佳策略,在某些工作负载中可以将工作负载执行时间减少5%–25%,而在最坏情况下,最多可以增加3%。使用我们的路由策略,我们表明,在检查的技术参数下,就算在插入损耗和激光功率方面,NoC域也可以考虑使用32端点互连,即使对调制器使用保守的参数也是如此。使用最有效的路由策略,根据通信工作量,位转换能量可减少8%至15%。我们还表明,采用最佳策略,在某些工作负载中可以将工作负载执行时间减少5%–25%,而最坏情况下的增加最多为3%。使用我们的路由策略,我们表明,在检查的技术参数下,就算在插入损耗和激光功率方面,NoC域也可以考虑使用32端点互连,即使对于调制器使用保守的参数也是如此。

更新日期:2020-12-31
down
wechat
bug