当前位置: X-MOL 学术J. Mater. Process. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toward the use of small size bulge tests: Numerical and experimental study at small bulge diameter to sheet thickness ratios
Journal of Materials Processing Technology ( IF 6.7 ) Pub Date : 2021-05-01 , DOI: 10.1016/j.jmatprotec.2020.117019
V. Lafilé , B. Galpin , L. Mahéo , C.C. Roth , V. Grolleau

Abstract For calibrating sheet metal hardening and anisotropic constitutive models, the bulge test has proven to be an invaluable tool. In recent studies, the analysis of the test has been considerably improved by using Digital Image Correlation. Despite the progress achieved in the analysis of the measured data, based on membrane hypotheses it is still necessary to use large bulge diameter to sheet thickness ratios of more than 100 in order to ensure the validity of the standard equations. In order to overcome this constraint, a numerical study of a wide range of specimen material behaviors and various bulge geometries is performed. The numerical results obtained are used to draw up new estimates for the bending strain, the radii of curvature and the average bulge stress. The numerical and experimental data show that the inner and the outer radii of curvature do not share the same center. This means that the difference between outer and inner radii of curvature is not equal to the thickness of the apex. The accuracy of the approach presented here is assessed on the basis of numerical simulations and experiments. Numerical simulations involve six different types of Swift and Voce behavior. Experimental validation is performed from original bending and curvature measurements on aluminum and steel bulges. Lastly, a hardening law identification algorithm is presented and compared with experimental results obtained for bulge diameters as small as 50mm and bulge size ratios ranging from 42 to 150.

中文翻译:

使用小尺寸膨胀试验:小膨胀直径与板厚比的数值和实验研究

摘要 对于校准钣金硬化和各向异性本构模型,膨胀测试已被证明是一种非常宝贵的工具。在最近的研究中,通过使用数字图像相关性,测试分析得到了显着改善。尽管在分析测量数据方面取得了进展,但基于膜假设仍然需要使用大于 100 的大凸起直径与板厚比以确保标准方程的有效性。为了克服这一限制,对各种样品材料行为和各种凸起几何形状进行了数值研究。所获得的数值结果用于对弯曲应变、曲率半径和平均膨胀应力进行新的估计。数值和实验数据表明,内曲率半径和外曲率半径不在同一中心。这意味着外曲率半径和内曲率半径之间的差异不等于顶点的厚度。此处介绍的方法的准确性是在数值模拟和实验的基础上评估的。数值模拟涉及六种不同类型的 Swift 和 Voce 行为。实验验证是根据对铝和钢凸起的原始弯曲和曲率测量进行的。最后,提出了一种硬化规律识别算法,并与针对小至 50 毫米的凸起直径和 42 到 150 的凸起尺寸比获得的实验结果进行了比较。这意味着外曲率半径和内曲率半径之间的差异不等于顶点的厚度。此处介绍的方法的准确性是在数值模拟和实验的基础上评估的。数值模拟涉及六种不同类型的 Swift 和 Voce 行为。实验验证是根据对铝和钢凸起的原始弯曲和曲率测量进行的。最后,提出了一种硬化规律识别算法,并与针对小至 50 毫米的凸起直径和 42 到 150 的凸起尺寸比获得的实验结果进行了比较。这意味着外曲率半径和内曲率半径之间的差异不等于顶点的厚度。此处介绍的方法的准确性是在数值模拟和实验的基础上评估的。数值模拟涉及六种不同类型的 Swift 和 Voce 行为。实验验证是根据对铝和钢凸起的原始弯曲和曲率测量进行的。最后,提出了一种硬化规律识别算法,并与针对小至 50 毫米的凸起直径和 42 到 150 的凸起尺寸比获得的实验结果进行了比较。实验验证是根据对铝和钢凸起的原始弯曲和曲率测量进行的。最后,提出了一种硬化规律识别算法,并与针对小至 50 毫米的凸起直径和 42 到 150 的凸起尺寸比获得的实验结果进行了比较。实验验证是根据对铝和钢凸起的原始弯曲和曲率测量进行的。最后,提出了一种硬化规律识别算法,并与针对小至 50 毫米的凸起直径和 42 到 150 的凸起尺寸比获得的实验结果进行了比较。
更新日期:2021-05-01
down
wechat
bug