当前位置: X-MOL 学术Flow Meas. Instrum. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiphase flow and mixing quantification using computational fluid dynamics and magnetic resonance imaging
Flow Measurement and Instrumentation ( IF 2.3 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.flowmeasinst.2020.101816
Wessenu Maru , Daniel Holland , Susithra Lakshmanan , Andy Sederman , Andrew Thomas

Abstract This paper investigates the current challenges and practices of quality measurement in the oil & gas industry. It particularly focuses on automatic pipeline sampling of petroleum liquids according to ISO 3171. The problem is tackled using innovative diagnostic techniques, advanced design optimisation tools and a new mixing system that uses a Liquid Jet In Cross Flow (LJICF) configuration. First, a 2.5″ diameter small multiphase flow loop (SMPFL) was developed and magnetic resonance (MR) was utilised to characterise the mechanistic behaviour of mixing and the mixing efficiency of various nozzles. Second, a computational fluid dynamics (CFD) model was developed and validated using MR measurements on the SMPFL. The CFD model was then used to optimise the nozzle design as well as the design of a 10” nominal diameter large multiphase flow loop (LMPFL). The LMPFL is a well instrumented facility and was used to conduct mixing experiments on low velocity, low density and low viscosity fluids flowing in a horizontal pipe, which constitute challenging conditions for a mixing device to create homogeneous mixture. To quantify the homogeneity of the mixture created by the new mixing system on the LMPFL, a multiport profile proving (MPP) technique was developed and used to conduct water injection testing in compliance with ISO 3171 and API 8.2 standards. The water volume fraction (WVF) determined by the MPP had low relative error when compared to the mean WVF measured by the water cut meters and samples analysed using Coulometric Karl-Fischer (KF). Additionally, in an earlier study [ 1 ], the MPP measurement was able to detect a density gradient across the diameter of the pipe, making it an appropriate method to judge the homogeneity of the mixture. Therefore, the new mixing system together with the MPP technology shows real promise as an effective sampling and proving system for the petrochemical industry.

中文翻译:

使用计算流体动力学和磁共振成像进行多相流和混合量化

摘要 本文调查了石油和天然气行业质量测量的当前挑战和实践。它特别关注符合 ISO 3171 标准的石油液体自动管道采样。该问题通过使用创新的诊断技术、先进的设计优化工具和使用交叉流液体射流 (LJICF) 配置的新混合系统来解决。首先,开发了一个 2.5 英寸直径的小型多相流回路 (SMPFL),并利用磁共振 (MR) 来表征混合的机械行为和各种喷嘴的混合效率。其次,使用 SMPFL 上的 MR 测量开发并验证了计算流体动力学 (CFD) 模型。然后使用 CFD 模型来优化喷嘴设计以及 10 英寸公称直径大型多相流回路 (LMPFL) 的设计。LMPFL 是一种仪器仪表齐全的设施,用于对在水平管道中流动的低速、低密度和低粘度流体进行混合实验,这对混合设备产生均匀混合物构成了挑战性的条件。为了量化由 LMPFL 上的新混合系统产生的混合物的均匀性,开发了一种多端口剖面验证 (MPP) 技术,并用于进行符合 ISO 3171 和 API 8.2 标准的注水测试。与含水量计测量的平均 WVF 和使用库仑法卡尔费休 (KF) 分析的样品相比,MPP 确定的水体积分数 (WVF) 具有较低的相对误差。此外,在早期的一项研究 [1] 中,MPP 测量能够检测管​​道直径上的密度梯度,使其成为判断混合物均匀性的合适方法。因此,新的混合系统与 MPP 技术一起显示出作为石油化工行业有效采样和验证系统的真正前景。
更新日期:2021-03-01
down
wechat
bug