当前位置: X-MOL 学术Int. J. Struct. Stab. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Efficient Non-Iterative Hybrid Method for Analyzing Train–Rail–Bridge Interaction Problems
International Journal of Structural Stability and Dynamics ( IF 3.0 ) Pub Date : 2020-12-15 , DOI: 10.1142/s0219455421500292
Kang Shi 1 , Xuhui He 2, 3 , Yunfeng Zou 2, 3 , Zhi Zheng 1, 4
Affiliation  

The dynamic interaction problem for the train–rail–bridge (TRB) systems presents a computational challenge, especially for the analysis of large-size TRB coupling systems. To address this issue, an efficient non-iterative hybrid method (NHM) is proposed. With this method, the integrated TRB system is divided into three subsystems, i.e. the train subsystem, the rail subsystem, and the bridge subsystem. Based on the individual subsystems, a multi-step[Formula: see text] technique is adopted in which a fine time step is used to analyze the high-frequency coupling vibration for the train and rail subsystems, and a coarse time step is adopted to calculate the low-frequency coupling vibration for the rail and bridge subsystem. Additionally, Zhais explicit integral method is used to predict the displacement of the wheelsets and the rail at the current time step before using the Newmark method. The proposed method incorporates the advantages of Zhai’s explicit method and the MS technique to avoid the iteration that may be required for the train–rail coupled analysis. The simulation fidelity and computational efficiency of the proposed method are demonstrated in the analysis of two examples of typical high-speed railway bridges. It was demonstrated that the proposed method can significantly enhance the computational efficiency, while maintaining a higher precision with a larger time step in comparison with other existing methods.

中文翻译:

一种分析火车-铁路-桥梁相互作用问题的有效非迭代混合方法

火车-铁路-桥梁(TRB)系统的动态相互作用问题提出了计算挑战,特别是对于大型TRB耦合系统的分析。为了解决这个问题,提出了一种有效的非迭代混合方法(NHM)。采用这种方法,综合TRB系统分为三个子系统,即火车子系统、轨道子系统和桥梁子系统。基于各个子系统,采用多步[公式:见正文]技术,采用精细时间步分析列车和轨道子系统的高频耦合振动,采用粗时间步分析列车和轨道子系统的高频耦合振动。计算铁路和桥梁子系统的低频耦合振动。此外,在使用Newmark方法之前,Zhai的显式积分法用于预测当前时间步的轮对和钢轨的位移。所提出的方法结合了翟显式方法和 MS 技术的优点,避免了列车-轨道耦合分析可能需要的迭代。通过对两个典型高速铁路桥梁实例的分析,证明了该方法的仿真保真度和计算效率。结果表明,与其他现有方法相比,所提出的方法可以显着提高计算效率,同时保持更高的精度和更大的时间步长。所提出的方法结合了翟显式方法和 MS 技术的优点,避免了列车-轨道耦合分析可能需要的迭代。通过对两个典型高速铁路桥梁实例的分析,证明了该方法的仿真保真度和计算效率。结果表明,与其他现有方法相比,所提出的方法可以显着提高计算效率,同时保持更高的精度和更大的时间步长。所提出的方法结合了翟显式方法和 MS 技术的优点,避免了列车-轨道耦合分析可能需要的迭代。通过对两个典型高速铁路桥梁实例的分析,证明了该方法的仿真保真度和计算效率。结果表明,与其他现有方法相比,所提出的方法可以显着提高计算效率,同时保持更高的精度和更大的时间步长。
更新日期:2020-12-15
down
wechat
bug