当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Real-Time Electron Microscopy of Nanocrystal Synthesis, Transformations, and Self-Assembly in Solution
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2020-12-14 , DOI: 10.1021/acs.accounts.0c00678
Peter Sutter 1 , Eli Sutter 2
Affiliation  

Solution-phase processes such as colloidal synthesis and transformations have enabled the formation of nanocrystals with exquisite control over size, shape, and composition. Self-assembly, in solution or at phase boundaries, can arrange such nanocrystal building blocks into ordered superlattices and dynamically reconfigurable “smart” materials. Ultimately, continued improvements in our ability to direct nanocrystal matter depend on progress in understanding colloidal chemistry and self-assembly in solution. The traditional approach for investigating the underlying, inherently dynamic processes involves sampling at different stages combined with ex situ characterization, for example, using electron microscopy. In situ studies have been restricted to a few methods capable of measuring in bulk liquids, either in reciprocal space by diffraction or scattering or using spatially averaging (e.g., optical) measurements. These strategies face clear limitations in obtaining mechanistic information, and they are unable to address heterogeneous systems that may harbor rich sets of configurations with different local properties. The development of microfabricated cells that hermetically encapsulate bulk solutions between ultrathin (electron transparent) membranes has paved the way for studying processes in liquids in real time by electron microscopy at resolution down to the atomic scale. Electrons interact much more strongly with matter than other probes, for example, X-rays. In ordinary inorganic samples, the main effects are atom displacements and defect formation via knock-on and ionization damage. In liquid-cell electron microscopy, the interaction of the beam with both the suspended nanostructures and the solution creates more diverse effects, so the straightforward scenario of imaging unperturbed nanocrystal chemistry in solution is rarely realized.

中文翻译:

溶液中纳米晶体的合成,转化和自组装的实时电子显微镜观察

诸如胶体合成和转化之类的固溶相过程已经使得能够形成对尺寸,形状和组成具有精确控制的纳米晶体。在溶液中或在相界处的自组装可将此类纳米晶体构建基块排列成有序的超晶格和可动态重新配置的“智能”材料。最终,我们引导纳米晶体物质的能力的不断提高取决于对胶体化学和溶液中自组装的了解。研究潜在的固有动态过程的传统方法包括在不同阶段进行采样,并结合异地表征,例如使用电子显微镜。原位研究仅限于能够通过衍射或散射或使用空间平均(例如光学)测量在互易空间中测量散装液体的几种方法。这些策略在获取机械信息方面面临明显的局限性,并且无法解决可能包含具有不同局部属性的丰富配置集的异构系统。密闭封装超薄(电子透明)膜之间的整体溶液的微细电池的发展,为通过电子显微镜以低至原子级的分辨率实时研究液体中的过程铺平了道路。电子与物质的相互作用远比其他探针(例如X射线)强烈。在普通的无机样品中 主要影响是原子位移和通过敲除和电离损伤形成的缺陷。在液池电子显微镜中,电子束与悬浮的纳米结构和溶液的相互作用产生了更多种不同的效果,因此很少能实现在溶液中对纳米晶体化学成分进行成像的直接方案。
更新日期:2021-01-05
down
wechat
bug