当前位置: X-MOL 学术Can. J. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental determination of gas diffusivity in liquids—A review
The Canadian Journal of Chemical Engineering ( IF 1.6 ) Pub Date : 2020-12-15 , DOI: 10.1002/cjce.23984
Simant R. Upreti 1 , Anil K. Mehrotra 2
Affiliation  

Unit operations and processes abound with gas diffusion in liquids, which is a sophisticated phenomenon in which mass transfer is characterized by diffusion coefficient or diffusivity. Compared to diffusion in gas phase, the closely packed liquid molecules strongly influence diffusive mass transfer to the extent that it is impossible to have a general theory for a reasonably accurate estimation of diffusivity in liquids. This situation is further compounded by the fact that diffusivity cannot be measured directly but can only be estimated indirectly with the help of a number of observable properties (eg, mass, volume, pressure, etc). This fact gives rise to a myriad of experimental methods for the determination of gas diffusivity in liquids. These methods report gas diffusivities over widely varying ranges of temperature, pressure, and liquid composition. To provide a state‐of‐the‐art knowledge base for such methods is the objective of this work. The focus is on gas diffusion in binary gas‐liquid systems. Starting with necessary theoretical foundations, we provide a systematic categorization of these methods based on the property change utilized for diffusivity determination. The methods are then concisely described, and the diffusivity data are summarized for over 160 gas‐liquid systems at different temperature and pressure conditions. Empirical correlations are provided for different gas‐liquid systems, which could be used for interpolating gas diffusivity as a function of temperature, pressure, and composition.

中文翻译:

液体中气体扩散率的实验测定—综述

单元操作和过程伴随着气体在液体中的扩散,这是一种复杂的现象,其中传质的特征在于扩散系数或扩散率。与气相扩散相比,紧密堆积的液体分子对扩散质量转移的影响很大,以至于不可能有一个合理合理地估算液体扩散率的通用理论。由于不能直接测量扩散率,而只能借助许多可观察的特性(例如,质量,体积,压力等)间接地估计扩散率,这一事实使情况更加复杂。这一事实引起了无数种测定液体中气体扩散率的实验方法。这些方法报告了在温度,压力,和液体成分。为此类方法提供最新的知识库是本工作的目标。重点是二元气液系统中的气体扩散。从必要的理论基础开始,我们基于用于扩散率确定的特性变化,对这些方法进行了系统的分类。然后简明地描述了这些方法,并总结了在不同温度和压力条件下超过160种气液系统的扩散数据。提供了针对不同气液系统的经验相关性,可用于根据温度,压力和成分对气体扩散率进行插值。从必要的理论基础开始,我们基于用于扩散率确定的特性变化,对这些方法进行了系统的分类。然后简明地描述了这些方法,并总结了在不同温度和压力条件下超过160种气液系统的扩散数据。提供了针对不同气液系统的经验相关性,可用于根据温度,压力和成分对气体扩散率进行插值。从必要的理论基础开始,我们基于用于扩散率确定的特性变化,对这些方法进行了系统的分类。然后简明地描述了这些方法,并总结了在不同温度和压力条件下超过160种气液系统的扩散数据。提供了针对不同气液系统的经验相关性,可用于根据温度,压力和成分对气体扩散率进行插值。
更新日期:2020-12-15
down
wechat
bug