当前位置: X-MOL 学术J. Electr. Eng. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evaluation of the Performance in Charging Efficiencies and Losses of Ultrafine Particles Ranging in Sizes from 15 to 75 nm in a Unipolar Corona-based Ionizer
Journal of Electrical Engineering & Technology ( IF 1.6 ) Pub Date : 2020-12-14 , DOI: 10.1007/s42835-020-00623-2
Panich Intra , Paisarn Wanusbodeepaisarn , Thanesvorn Siri-achawawath

For this study, a unipolar corona-based ionizer was constructed and experimentally evaluated for charging efficiencies and losses of ultrafine particles in the size range of 15–75 nm at different corona voltage, ion trap voltage and particle flow rate. The corona voltage was applied to the ionizer between 2.0–3.0 kV. The discharge currents increased from 0.16 nA to 4.23 μA and the ion number concentration increased from 6.27 × 109 to 1.36 × 1014 ions/m3. Increasing the corona voltage lead to a higher discharge current and ion number concentration in the ionizer. The best intrinsic charging efficiency of the ionizer was about 92.15–99.33% for particle diameters ranging from 15 to 75 nm, and occurred at corona voltage, ion trap voltage and particle flow rate of about 3.0 kV, 100 V, 0.6 L/min, respectively. At a given corona voltage, the extrinsic charging efficiency increased as the particle flow rate increased. The best extrinsic charging efficiency ranged from 14.93 to 57.70% for particle diameters increasing from 15 to 75 nm, and occurred at corona voltage, ion trap voltage and particle flow rate of about 2.6 kV, 100 V, and 1.5 L/min, respectively. In the present ionizer, the highest electrostatic loss was observed for particles with a diameter of about 45 nm, and it was about 88.03% at a corona voltage of 3.0 kV and an ion trap voltage of 200 V. Finally, the highest diffusion loss of about 22.66% was seen to occur with singly charged particles with a diameter of 15 nm at the particle flow rate of about 0.6 L/min.

中文翻译:

单极电晕基离子发生器中尺寸范围为 15 至 75 nm 的超细颗粒的充电效率和损耗性能评估

在这项研究中,构建了一个基于单极电晕的离子发生器,并通过实验评估了在不同电晕电压、离子阱电压和粒子流速下,15-75 nm 尺寸范围内的超细粒子的充电效率和损耗。电晕电压在 2.0-3.0 kV 之间施加到离子发生器。放电电流从 0.16 nA 增加到 4.23 μA,离子数浓度从 6.27 × 109 增加到 1.36 × 1014 ions/m3。增加电晕电压会导致离子发生器中更高的放电电流和离子数浓度。对于 15 至 75 nm 的粒径范围,离子发生器的最佳固有充电效率约为 92.15-99.33%,并且发生在电晕电压、离子阱电压和颗粒流速约为 3.0 kV、100 V、0.6 L/min 时,分别。在给定的电晕电压下,外在充电效率随着颗粒流速的增加而增加。对于粒径从 15 nm 增加到 75 nm 的最佳外在充电效率范围为 14.93% 到 57.70%,并且发生在电晕电压、离子阱电压和粒子流速分别约为 2.6 kV、100 V 和 1.5 L/min 时。在本离子发生器中,直径约 45 nm 的粒子的静电损失最高,在 3.0 kV 的电晕电压和 200 V 的离子阱电压下,静电损失约为 88.03%。最后,扩散损失最高的是在约 0.6 L/min 的颗粒流速下,直径为 15 nm 的单电荷颗粒发生了约 22.66% 的反应。粒子直径从 15 nm 增加到 75 nm 时增加了 70%,发生在电晕电压、离子阱电压和粒子流速分别约为 2.6 kV、100 V 和 1.5 L/min 的情况下。在本离子发生器中,直径约 45 nm 的粒子的静电损失最高,在 3.0 kV 的电晕电压和 200 V 的离子阱电压下,静电损失约为 88.03%。最后,扩散损失最高的是在约 0.6 L/min 的颗粒流速下,直径为 15 nm 的单电荷颗粒发生了约 22.66% 的反应。粒子直径从 15 nm 增加到 75 nm 时增加了 70%,发生在电晕电压、离子阱电压和粒子流速分别约为 2.6 kV、100 V 和 1.5 L/min 的情况下。在本离子发生器中,直径约 45 nm 的粒子的静电损失最高,在 3.0 kV 的电晕电压和 200 V 的离子阱电压下,静电损失约为 88.03%。最后,扩散损失最高的是在约 0.6 L/min 的颗粒流速下,直径为 15 nm 的单电荷颗粒发生了约 22.66% 的反应。
更新日期:2020-12-14
down
wechat
bug