当前位置: X-MOL 学术J. Geophys. Res. Planets › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Planetary‐Scale Wave Impacts on the Venusian Upper Mesosphere and Lower Thermosphere
Journal of Geophysical Research: Planets ( IF 3.9 ) Pub Date : 2020-12-13 , DOI: 10.1029/2020je006587
A. S. Brecht 1 , S. W. Bougher 2 , D. Shields 2 , H. Liu 3
Affiliation  

This work examines the planetary wave‐induced variability within the upper mesosphere/lower thermosphere of Venus by utilizing the Venus Thermospheric General Circulation Model (VTGCM). Rossby and Kelvin wave perturbations are driven by variations in the geopotential height of the VTGCM lower boundary (∼70 km). A suite of simulations was conducted to examine the impact of the individual and combined waves propagating from two different lower boundary conditions (uniform and varying). The Kelvin wave is the more dominant wave which produces the most variability. The combination of the Kelvin and Rossby waves provides a maximum temperature amplitude of 13 K at 92 km and maximum zonal wind amplitude of 23 m/s at 102 km. The combined waves overall are able to propagate up to 125 km. Most of the variation within the temperature, winds, and composition occurs between 70 and 110 km. The varying lower boundary increases the magnitude of the wave deposition and atmospheric responses, but weakly changes the propagation altitude. The thermal variation due to the planetary waves does not reproduce most observed variations. The simulated O2 IR nightglow emission is sensitive to the waves with respect to intensity and local time, but lacks latitudinal variation. The integrated intensity ranges from 1.2 MR to 1.65 MR and the local time ranges from 0.33 local time to 23.6 local time. Overall, planetary waves do affect the atmospheric structure, but there are still large observed variations that planetary waves alone cannot explain (i.e., thermal structure).

中文翻译:

行星尺度波对金星上的中层中层和下层热层的影响

这项工作通过利用金星热层总体大气环流模型(VTGCM)检验了金星上层中层/下层热层内行星波引起的变化。Rossby和Kelvin波扰动是由VTGCM下边界(〜70 km)的地势高度变化驱动的。进行了一系列仿真,以检查从两个不同的下边界条件(均匀和变化)传播的单个波和组合波的影响。开尔文波是最主要的波,产生最大的可变性。开尔文波和罗斯比波的组合在92 km处提供13 K的最大温度幅度,在102 km处提供23 m / s的最大纬向风幅度。合并的波总体上能够传播至125 km。温度,风,组成发生在70至110公里之间。下边界的变化会增加波沉积的幅度和大气响应,但会弱化传播高度。由于行星波引起的热变化并没有重现大多数观测到的变化。模拟O2 IR夜光发射在强度和本地时间方面对波敏感,但缺乏纬度变化。积分强度范围从1.2 MR到1.65 MR,本地时间从0.33本地时间到23.6本地时间。总体而言,行星波确实会影响大气结构,但仍然存在仅凭行星波无法解释的巨大观测变化(即热结构)。
更新日期:2021-01-27
down
wechat
bug