当前位置: X-MOL 学术Opt. Laser Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Penetration-depth control in a remote laser-welding system based on an optical triangulation loop
Optics and Lasers in Engineering ( IF 3.5 ) Pub Date : 2021-04-01 , DOI: 10.1016/j.optlaseng.2020.106464
Matjaž Kos , Erih Arko , Hubert Kosler , Matija Jezeršek

Abstract Remote laser-welding systems are being used more frequently because of their larger working areas, shorter downtimes and ability to weld different seam types with high accuracy at greater speeds in comparison to conventional welding. Therefore, precise process-monitoring methods are needed in order to achieve weld traceability and good process and quality control to accompany different welding situations. This paper proposes the use of optical triangulation feedback on a remote laser-welding system that makes it possible to monitor a larger working area. This configuration means we can monitor the interaction zone itself, analyze the 3D position of the laser beam and key process estimators as a result of laser welding. AISI steel plates were welded in a lap configuration to show that stable partial penetration can be achieved. First, a dependency matrix was constructed for the different welding parameters (material thicknesses, welding speeds and laser powers) in order to describe the change of the weld's penetration depth with respect to the key estimators. An approximation was used to characterize the change of the weld's depth according to the change of the estimators. The experimental results demonstrate that the interaction zone's area can be used to successfully control the laser's power output in order to achieve a stable partial penetration with an error of less than 7 % of the desired target weld depth. Longitudinal macrographies show a significantly more constant weld penetration depth and laser-induced plume reduction during welding.

中文翻译:

基于光学三角测量环的远程激光焊接系统穿透深度控制

摘要 远程激光焊接系统因其工作区域更大、停机时间更短以及与传统焊接相比能够以更高的速度以更高的精度焊接不同类型的焊缝而被越来越频繁地使用。因此,需要精确的过程监控方法,以实现焊接可追溯性和良好的过程和质量控制,以适应不同的焊接情况。本文建议在远程激光焊接系统上使用光学三角测量反馈,从而可以监控更大的工作区域。这种配置意味着我们可以监控交互区域本身,分析激光束的 3D 位置和激光焊接的关键过程估算器。AISI 钢板以搭接配置焊接,以表明可以实现稳定的部分熔透。第一的,为不同的焊接参数(材料厚度、焊接速度和激光功率)构建了一个相关矩阵,以描述焊缝熔深相对于关键估计值的变化。根据估计量的变化,使用近似值来表征焊缝深度的变化。实验结果表明,相互作用区的面积可用于成功控制激光的功率输出,以实现稳定的部分熔透,误差小于所需目标焊缝深度的 7%。纵向宏观照片显示焊接过程中焊缝熔深和激光诱导的烟羽减少明显更稳定。焊接速度和激光功率)以描述焊缝熔深相对于关键估计值的变化。根据估计量的变化,使用近似值来表征焊缝深度的变化。实验结果表明,相互作用区的面积可用于成功控制激光的功率输出,以实现稳定的部分熔透,误差小于所需目标焊缝深度的 7%。纵向宏观照片显示焊接过程中焊缝熔深和激光诱导的烟羽减少明显更稳定。焊接速度和激光功率)以描述焊缝熔深相对于关键估计值的变化。根据估计量的变化,使用近似值来表征焊缝深度的变化。实验结果表明,相互作用区的面积可用于成功控制激光的功率输出,以实现稳定的部分熔透,误差小于所需目标焊缝深度的 7%。纵向宏观照片显示焊接过程中焊缝熔深和激光诱导的烟羽减少明显更稳定。s 深度根据估计量的变化。实验结果表明,相互作用区的面积可用于成功控制激光的功率输出,以实现稳定的部分熔透,误差小于所需目标焊缝深度的 7%。纵向宏观照片显示焊接过程中焊缝熔深和激光诱导的烟羽减少明显更稳定。s 深度根据估计量的变化。实验结果表明,相互作用区的面积可用于成功控制激光的功率输出,以实现稳定的部分熔透,误差小于所需目标焊缝深度的 7%。纵向宏观照片显示焊接过程中焊缝熔深和激光诱导的烟羽减少明显更稳定。
更新日期:2021-04-01
down
wechat
bug