当前位置: X-MOL 学术Curr. Org. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing Short Peptides: A Sisyphean Task?
Current Organic Chemistry ( IF 2.6 ) Pub Date : 2020-10-31 , DOI: 10.2174/1385272824999200910094034
Héctor M. Pineda-Castañeda 1 , Diego S. Insuasty-Cepeda 1 , Víctor A. Niño-Ramírez 1 , Hernando Curtidor 2 , Zuly J. Rivera-Monroy 1
Affiliation  

Over the last few years, short peptides have become a powerful tool in basic and applied research, with different uses like diagnostic, antimicrobial peptides, human health promoters or bioactive peptides, therapeutic treatments, templates for peptidomimetic design, and peptide-based vaccines. In this endeavor, different approaches and technologies have been explored, such as bioinformatics, large-scale peptide synthesis, omics sciences, structure-activity relationship studies, and a biophysical approach, among others, seeking to obtain the shortest sequence with the best activity. The advantage of short peptides lies in their stability, ease of production, safety, and low cost. There are many strategies for designing short peptides with biomedical and industrial applications (targeting the structure, length, charge, or polarity) or as a starting point for improving their properties (sequence data base, de novo sequences, templates, or organic scaffolds). In peptide design, it is necessary to keep in mind factors such as the application (peptidomimetic, immunogen, antimicrobial, bioactive, or protein-protein interaction inhibitor), the expected target (membrane cell, nucleus, receptor proteins, or immune system), and particular characteristics (shorter, conformationally constrained, cycled, charged, flexible, polymerized, or pseudopeptides). This review summarizes the different synthetic approaches and strategies used to design new peptide analogs, highlighting the achievements, constraints, and advantages of each.



中文翻译:

设计短肽:西西弗(Sisyphean)的任务?

在过去的几年中,短肽已成为基础研究和应用研究中的有力工具,具有不同的用途,例如诊断,抗菌肽,人类健康促进剂或生物活性肽,治疗方法,拟肽设计模板和基于肽的疫苗。在这一努力中,已经探索了不同的方法和技术,例如生物信息学,大规模肽合成,组学,结构活性关系研究和生物物理方法等,以寻求获得具有最佳活性的最短序列。短肽的优势在于它们的稳定性,易于生产,安全和低成本。在生物医学和工业应用中,有许多策略可以设计短肽(针对结构,长度,电荷,或极性)或作为改善其属性(序列数据库,从头序列,模板或有机支架)的起点。在肽设计中,必须牢记诸如应用(拟肽,免疫原,抗微生物,生物活性或蛋白-蛋白质相互作用抑制剂),预期靶标(膜细胞,细胞核,受体蛋白或免疫系统)等因素,和特定特征(较短,构象受限,循环,带电荷,柔性,聚合或假肽)。这篇综述总结了用于设计新肽类似物的不同合成方法和策略,重点介绍了每种肽的成就,局限性和优势。必须记住一些因素,例如应用(拟肽,免疫原,抗微生物,生物活性或蛋白质-蛋白质相互作用抑制剂),预期目标(膜细胞,细胞核,受体蛋白质或免疫系统)和特定特征(较短,构象受限,循环,带电荷,柔性,聚合或假肽)。这篇综述总结了用于设计新肽类似物的不同合成方法和策略,重点介绍了每种肽的成就,局限性和优势。必须记住一些因素,例如应用(拟肽,免疫原,抗微生物,生物活性或蛋白质-蛋白质相互作用抑制剂),预期目标(膜细胞,细胞核,受体蛋白质或免疫系统)和特定特征(较短,构象受限,循环,带电荷,柔性,聚合或假肽)。这篇综述总结了用于设计新肽类似物的不同合成方法和策略,重点介绍了每种肽的成就,局限性和优势。带电荷,柔性,聚合或假肽)。这篇综述总结了用于设计新肽类似物的不同合成方法和策略,重点介绍了每种肽的成就,局限性和优势。带电荷,柔性,聚合或假肽)。这篇综述总结了用于设计新肽类似物的不同合成方法和策略,重点介绍了每种肽的成就,局限性和优势。

更新日期:2020-12-12
down
wechat
bug