当前位置: X-MOL 学术Comput. J. › 论文详情
Linearly Homomorphic Signatures from Lattices
The Computer Journal ( IF 1.077 ) Pub Date : 2020-11-27 , DOI: 10.1093/comjnl/bxaa034
Lin C, Xue R, Yang S, et al.

Abstract
Linearly homomorphic signatures (LHSs) allow any entity to linearly combine a set of signatures and to provide authentication service for the corresponding (combined) data. The public key of the current known LHSs from lattices in the standard model requires $O(l)$ matrices and $O(k)$ vectors, where $l$ is the length of file identifier and $k$ is the maximum data set size that linear functions support. In this paper, we construct two lattice-based LHS schemes with provable security in the standard model and both schemes can authenticate vectors defined over finite field. First, we present a basic LHS scheme satisfying selective security, based on the full-rank difference hash functions. Second, we modify the chameleon hash function constructed by (Cash, D., Hofheinz, D., Kiltz, E. and Peikert, C. (2010) Bonsai Trees, or How to Delegate a Lattice Basis. In Proc. EUROCRYPT 10, Monaco/French Riviera, May 30 to June 3, pp. 523–552. Springer, Berlin) to construct a linearly homomorphic chameleon hash function (LHCHF), which can be applied to all transformations from selectively secure LHS scheme that authenticates vectors defined over finite field $\mathbb{F}_{p}$ ($p=poly(n)$) to fully secure one, except for a new one that authenticates vectors defined over a small field. Starting from LHCFH and the basic scheme as above, we obtain a fully secure LHS scheme. Both schemes can be used to sign multiple files and have relatively short public keys consisting of $O(1)$ matrices and $O(k)$ vectors.


中文翻译:

格的线性同态签名

抽象
线性同态签名(LHS)允许任何实体线性组合一组签名,并为相应的(组合)数据提供身份验证服务。当前已知的标准模型中来自格子的LHS的公钥需要$ O(l)$个矩阵和$ O(k)$个向量,其中$ l $是文件标识符的长度,$ k $是最大数据集线性函数支持的大小。在本文中,我们在标准模型中构造了两个具有可证明安全性的基于格的LHS方案,并且这两种方案都可以验证在有限域上定义的向量。首先,我们基于满级差值哈希函数,提出了一种满足选择性安全性的基本LHS方案。其次,我们修改变色龙哈希函数,该函数由(Cash,D.,Hofheinz,D.,Kiltz,E. and Peikert,C.(2010)Bonsai Trees,或如何委托晶格基础。在过程中。EUROCRYPT 10,摩纳哥/法国里维埃拉,5月30日至6月3日,第523–552页。来构建线性同态变色龙哈希函数(LHCHF),该函数可应用于选择性安全LHS方案的所有变换,该方案对在有限域$ \ mathbb {F} _ {p} $($ p = poly(n)$)可以完全保护一个,但新的可以对在一个小字段上定义的向量进行身份验证。从LHCFH和上述基本方案开始,我们获得了一个完全安全的LHS方案。这两种方案都可以用于签名多个文件,并且具有相对较短的公钥,该公钥由$ O(1)$矩阵和$ O(k)$向量组成。该方法可应用于从选择性安全LHS方案进行的所有转换,该方案对通过有限字段$ \ mathbb {F} _ {p} $($ p = poly(n)$)定义的向量进行身份验证到完全安全,新的除外验证在较小字段上定义的向量。从LHCFH和上述基本方案开始,我们获得了一个完全安全的LHS方案。这两种方案都可以用于签名多个文件,并且具有相对较短的公钥,该公钥由$ O(1)$矩阵和$ O(k)$向量组成。该方法可应用于从选择性安全LHS方案进行的所有转换,该方案对通过有限字段$ \ mathbb {F} _ {p} $($ p = poly(n)$)定义的向量进行身份验证到完全安全,新的除外验证在较小字段上定义的向量。从LHCFH和上述基本方案开始,我们获得了一个完全安全的LHS方案。这两种方案都可以用于签名多个文件,并且具有相对较短的公钥,该公钥由$ O(1)$矩阵和$ O(k)$向量组成。
更新日期:2021-01-19
全部期刊列表>>
微生物研究
亚洲大洋洲地球科学
NPJ欢迎投稿
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
上海中医药大学
浙江大学
西湖大学
化学所
北京大学
清华
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
清华大学-1
武汉大学
浙江大学
天合科研
x-mol收录
试剂库存
down
wechat
bug