当前位置: X-MOL 学术Int. J. Mod. Phys. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The effect of hydrostatic pressure on binding energy and polaron effect of bound polaron in wurtzite AlyGa1−yN/AlxGa1−xN parabolic quantum well
International Journal of Modern Physics B ( IF 2.6 ) Pub Date : 2020-12-11 , DOI: 10.1142/s0217979221500089
Feng Qi Zhao 1 , Zi Zheng Guo 2 , Bo Zhao 1
Affiliation  

The effect of hydrostatic pressure on binding energy and polaron effect of the bound polaron in a wurtzite Al[Formula: see text]Ga[Formula: see text]N/Al[Formula: see text]Ga[Formula: see text]N parabolic quantum well (QW) is studied using the Lee–Low–Pines intermediate coupling variational method in the paper. The numerical relationship of binding energy and polaron effect of the bound polaron are given as a functions of pressure [Formula: see text], composition [Formula: see text] and well width [Formula: see text]. In the theoretical calculations, the anisotropy of the electron effective band mass, the optical phonon frequency, the dielectric constant and other parameters in the system varying with the pressure [Formula: see text] and the coordinate [Formula: see text] are included. The electron–optical phonon interaction and the impurity center–optical phonon interaction are considered. The results show that hydrostatic pressure has a very obvious effect on binding energy and polaron effect of the bound polaron in the wurtzite Al[Formula: see text]Ga[Formula: see text]N/Al[Formula: see text]Ga[Formula: see text]N parabolic QW. For QWs with determined structural parameters, the contributions of the three branch of phonons, i.e., the confined (CF) phonon, half-space (HS) phonon and the interface (IF) phonon, to binding energy of the polaron increase with the increase of the pressure [Formula: see text], the CF phonons contribute the most. Under the condition of a certain well width and hydrostatic pressure, with the increase of the composition [Formula: see text], the ground state binding energy of the bound polaron in the wurtzite Al[Formula: see text]Ga[Formula: see text]N/Al[Formula: see text]Ga[Formula: see text]N parabolic QW increases, and the contribution of the IF phonon and HS phonons to the binding energy decreases, while the contribution of the CF phonons and the total contribution of all phonons increase significantly. In the wurtzite Al[Formula: see text]Ga[Formula: see text]N/Al[Formula: see text]Ga[Formula: see text]N parabolic QW, the ground state binding energy of the bound polaron decreases with the increase of the well width. The decrease rate is greater in the narrow well, and smaller in the wide well. The contribution of different branches of phonons to binding energy varies with the change of the well width. With the increase of the well width, the contribution of CF phonons to binding energy increases, the contribution of HS phonons to binding energy decreases, and the IF phonon contribution and the total phonon contribution first increase to the maximum value and then gradually decrease slightly. The changing trend of binding energy of bound polaron in the wurtzite Al[Formula: see text]Ga[Formula: see text]N/Al[Formula: see text]Ga[Formula: see text]N parabolic QW, of the contribution of different branch phonons to binding energy with the pressure [Formula: see text], composition [Formula: see text] and well width [Formula: see text] is similar to that of the GaN/Al[Formula: see text]Ga[Formula: see text]N square QW, but the change in the parabolic QW is more obvious.

中文翻译:

静水压力对纤锌矿AlyGa1-yN/AlxGa1-xN抛物线量子阱结合能和结合极化子的极化子效应的影响

静水压力对纤锌矿中结合极化子的结合能和极化子效应的影响 Al[公式:见正文]Ga[公式:见正文]N/Al[公式:见正文]Ga[公式:见正文]N抛物线本文使用 Lee-Low-Pines 中间耦合变分方法研究了量子阱(QW)。结合能和结合极化子的极化子效应的数值关系作为压力[公式:见正文]、成分[公式:见正文]和井宽[公式:见正文]的函数给出。在理论计算中,包括电子有效带质量的各向异性、光学声子频率、介电常数等随压力[公式:见正文]和坐标[公式:见正文]变化的系统参数。考虑了电子-光学声子相互作用和杂质中心-光学声子相互作用。结果表明,静水压力对纤锌矿中结合极化子的结合能和极化子效应有非常明显的影响 Al[公式:见正文]Ga[公式:见正文]N/Al[公式:见正文]Ga[公式:见正文]N抛物线QW。对于具有确定结构参数的QW,三个声子分支,即受限(CF)声子,半空间(HS)声子和界面(IF)声子对极化子结合能的贡献随着增加而增加在压力[公式:见正文]中,CF声子贡献最大。在一定井宽和静水压力条件下,随着成分的增加[公式:见正文],纤锌矿中束缚极化子的基态结合能 Al[公式:见文]Ga[公式:见文]N/Al[公式:见文]Ga[公式:见文]N抛物线QW增加,贡献IF声子和HS声子对结合能的贡献降低,而CF声子的贡献和所有声子的总贡献显着增加。在纤锌矿Al[公式:见正文]Ga[公式:见正文]N/Al[公式:见正文]Ga[公式:见正文]N抛物线QW中,束缚极化子的基态结合能随增大而减小的井宽。窄井下降幅度较大,宽井下降幅度较小。不同声子分支对结合能的贡献随着阱宽的变化而变化。随着井宽的增加,CF声子对结合能的贡献增加,HS声子对结合能的贡献减小,IF声子贡献和总声子贡献先增大到最大值,然后逐渐减小。纤锌矿中束缚极化子结合能的变化趋势 Al[公式:见正文]Ga[公式:见正文]N/Al[公式:见正文]Ga[公式:见正文]N抛物线QW的贡献不同分支声子对结合能的压力[公式:见正文]、成分[公式:见正文]和阱宽[公式:见正文]与GaN/Al[公式:见正文]Ga[公式]相似:见正文]N平方QW,但抛物线QW的变化更明显。中频声子贡献和总声子贡献先增大到最大值,然后逐渐减小。纤锌矿中束缚极化子结合能的变化趋势 Al[公式:见正文]Ga[公式:见正文]N/Al[公式:见正文]Ga[公式:见正文]N抛物线QW的贡献不同分支声子对结合能的压力[公式:见正文]、成分[公式:见正文]和阱宽[公式:见正文]与GaN/Al[公式:见正文]Ga[公式]相似:见正文]N平方QW,但抛物线QW的变化更明显。中频声子贡献和总声子贡献先增大到最大值,然后逐渐减小。纤锌矿中束缚极化子结合能的变化趋势 Al[公式:见正文]Ga[公式:见正文]N/Al[公式:见正文]Ga[公式:见正文]N抛物线QW的贡献不同分支声子对结合能的压力[公式:见正文]、成分[公式:见正文]和阱宽[公式:见正文]与GaN/Al[公式:见正文]Ga[公式]相似:见正文]N平方QW,但抛物线QW的变化更明显。
更新日期:2020-12-11
down
wechat
bug