当前位置: X-MOL 学术Physiol. Plant › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CAM species differ in the contribution of C 3 and C 4 carboxylation to end of day CO 2 fixation
Physiologia Plantarum ( IF 5.4 ) Pub Date : 2020-12-22 , DOI: 10.1111/ppl.13312
Evelien van Tongerlo 1 , Govert Trouwborst 2 , Sander W Hogewoning 2 , Wim van Ieperen 1 , Janneke A Dieleman 3 , Leo F M Marcelis 1
Affiliation  

Crassulacean acid metabolism (CAM) is a photosynthetic pathway that temporally separates the nocturnal CO2 uptake, via phosphoenolpyruvate carboxylase (PEPC, C4 carboxylation), from the diurnal refixation by Rubisco (C3 carboxylation). At the end of the day (CAM-Phase IV), when nocturnally stored CO2 has depleted, stomata reopen and allow additional CO2 uptake, which can be fixed by Rubisco or by PEPC. This work examined the CO2 uptake via C3 and C4 carboxylation in phase IV in the CAM species Phalaenopsis 'Sacramento' and Kalanchoe blossfeldiana 'Saja'. Short blackout periods during phase IV caused a sharp drop in CO2 uptake in K. blossfeldiana but not in Phalaenopsis, indicating strong Rubisco activity only in K. blossfeldiana. Chlorophyll fluorescence revealed a progressive decrease in ΦPSII in Phalaenopsis, implying decreasing Rubisco activity, while ΦPSII remained constant in phase IV in K. blossfeldiana. However, short switching to 2% O2 indicated the presence of photorespiration and thus Rubisco activity in both species throughout phase IV. Lastly, in Phalaenopsis, accumulation of starch in phase IV occurred. These results indicate that in Phalaenopsis, PEPC was the main carboxylase in phase IV, although Rubisco remained active throughout the whole phase. This will lead to double carboxylation (futile cycling) but may help to avoid photoinhibition.

中文翻译:

CAM 物种在 C 3 和 C 4 羧化对一天结束时 CO 2 固定的贡献方面有所不同

景天酸代谢 (CAM) 是一种光合作用途径,可将通过磷酸烯醇丙酮酸羧化酶(PEPC,C4 羧化)的夜间 CO2 吸收与 Rubisco 的昼夜再固定(C3 羧化)分开。在一天结束时(CAM-阶段 IV),当夜间储存的 CO2 耗尽时,气孔重新打开并允许额外的 CO2 吸收,这可以通过 Rubisco 或 PEPC 修复。这项工作检查了 CAM 物种 Phalaenopsis 'Sacramento' 和 Kalanchoe blossfeldiana 'Saja' 在阶段 IV 中通过 C3 和 C4 羧化的 CO2 吸收。IV 阶段的短暂停电导致 K. blossfeldiana 的 CO2 吸收急剧下降,但蝴蝶兰没有,这表明仅在 K. blossfeldiana 中具有强烈的 Rubisco 活性。叶绿素荧光显示蝴蝶兰中 ΦPSII 逐渐减少,暗示减少 Rubisco 活性,而 ΦPSII 在 K. blossfeldiana 的第四阶段保持不变。然而,短暂切换到 2% O2 表明在整个 IV 阶段,两个物种都存在光呼吸,因此存在 Rubisco 活性。最后,在蝴蝶兰中,发生了 IV 期淀粉的积累。这些结果表明,在蝴蝶兰中,PEPC 是 IV 阶段的主要羧化酶,尽管 Rubisco 在整个阶段保持活跃。这将导致双羧化(无效循环),但可能有助于避免光抑制。这些结果表明,在蝴蝶兰中,PEPC 是 IV 阶段的主要羧化酶,尽管 Rubisco 在整个阶段保持活跃。这将导致双羧化(无效循环),但可能有助于避免光抑制。这些结果表明,在蝴蝶兰中,PEPC 是 IV 阶段的主要羧化酶,尽管 Rubisco 在整个阶段保持活跃。这将导致双羧化(无效循环),但可能有助于避免光抑制。
更新日期:2020-12-22
down
wechat
bug