当前位置: X-MOL 学术Appl. Clay. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advances in LDH coatings on Mg alloys for biomedical applications: A corrosion perspective
Applied Clay Science ( IF 5.6 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.clay.2020.105948
Jesslyn K.E. Tan , P. Balan , N. Birbilis

Abstract The clinical applications of biodegradable magnesium (Mg) alloys for implant applications have yet to be successfully applied, in part due to their rapid corrosion following the initial implant period in the physiological environment. Surface modifications for Mg alloys remains the most appropriate strategy to overcome the rapid corrosion rate and to improve the biomedical performance of Mg alloys. Although surface modifications have been extensively researched, limitations of current surface modification approaches are still present. Thus, layered double hydroxide (LDH) films have gained much attention as a potential approach since the films are able to delay the corrosion during the initial phase of implant of Mg alloys owing to their tunable crystal structure, ability to trap corrosive anions and intercalation with various anionic-based corrosion inhibitors. Furthermore, the biodegradability and biocompatibility of LDH films make them a potential next generation coating for implant applications. This review details the recent development of LDH and its composite coatings on Mg alloys as a potential protective coating for implant applications. The synthesis parameters affecting the structural and morphological properties of LDH films are discussed. The state-of-the-art of LDH and its composite coatings for corrosion mitigation are also assessed. Finally, this review concludes with the standing challenges, limitations, and future directions of LDH as a multi-functional coating on Mg alloys for biodegradable implant applications.

中文翻译:

用于生物医学应用的镁合金 LDH 涂层的进展:腐蚀视角

摘要 可生物降解镁 (Mg) 合金在植入应用中的临床应用尚未成功应用,部分原因是它们在生理环境中的初始植入期后迅速腐蚀。镁合金的表面改性仍然是克服快速腐蚀速率和提高镁合金生物医学性能的最合适的策略。尽管表面改性已被广泛研究,但当前表面改性方法的局限性仍然存在。因此,层状双氢氧化物(LDH)薄膜作为一种潜在的方法受到了广泛关注,因为该薄膜由于其可调谐的晶体结构能够在镁​​合金注入的初始阶段延迟腐蚀,捕集腐蚀性阴离子和嵌入各种阴离子型缓蚀剂的能力。此外,LDH 薄膜的生物降解性和生物相容性使其成为用于植入物应用的潜在下一代涂层。本综述详细介绍了 LDH 及其在镁合金上的复合涂层作为植入物应用的潜在保护涂层的最新发展。讨论了影响 LDH 薄膜结构和形态特性的合成参数。还评估了最先进的 LDH 及其用于缓蚀的复合涂层。最后,本综述总结了 LDH 作为镁合金上用于可生物降解植入物应用的多功能涂层的长期挑战、局限性和未来方向。LDH 薄膜的生物降解性和生物相容性使其成为用于植入物应用的潜在下一代涂层。本综述详细介绍了 LDH 及其在镁合金上的复合涂层作为植入物应用的潜在保护涂层的最新发展。讨论了影响 LDH 薄膜结构和形态特性的合成参数。还评估了最先进的 LDH 及其用于缓蚀的复合涂层。最后,本综述总结了 LDH 作为镁合金上用于可生物降解植入物应用的多功能涂层的长期挑战、局限性和未来方向。LDH 薄膜的生物降解性和生物相容性使其成为用于植入物应用的潜在下一代涂层。本综述详细介绍了 LDH 及其在镁合金上的复合涂层作为植入物应用的潜在保护涂层的最新发展。讨论了影响 LDH 薄膜结构和形态特性的合成参数。还评估了最先进的 LDH 及其用于缓蚀的复合涂层。最后,本综述总结了 LDH 作为镁合金上用于可生物降解植入物应用的多功能涂层的长期挑战、局限性和未来方向。本综述详细介绍了 LDH 及其在镁合金上的复合涂层作为植入物应用的潜在保护涂层的最新发展。讨论了影响 LDH 薄膜结构和形态特性的合成参数。还评估了最先进的 LDH 及其用于缓蚀的复合涂层。最后,本综述总结了 LDH 作为镁合金上用于可生物降解植入物应用的多功能涂层的长期挑战、局限性和未来方向。本综述详细介绍了 LDH 及其在镁合金上的复合涂层作为植入物应用的潜在保护涂层的最新发展。讨论了影响 LDH 薄膜结构和形态特性的合成参数。还评估了最先进的 LDH 及其用于缓蚀的复合涂层。最后,本综述总结了 LDH 作为镁合金上用于可生物降解植入物应用的多功能涂层的长期挑战、局限性和未来方向。
更新日期:2020-12-01
down
wechat
bug