当前位置: X-MOL 学术IEEE Trans. Sustain. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Managing Multitype Capacity Resources for Frequency Regulation in Unit Commitment Integrated With Large Wind Ramping
IEEE Transactions on Sustainable Energy ( IF 8.6 ) Pub Date : 2020-08-18 , DOI: 10.1109/tste.2020.3017231
Reza Hemmati , Hasan Mehrjerdi , Miadreza Shafie-khah , Pierluigi Siano , Joao P. S. Catalao

An efficient unit commitment planning must consider frequency regulation capacity in the model. Such models are more complicated under a high penetration level of renewable energy because of renewable ramping and uncertainty. This paper addresses these issues in the unit commitment. The proposed model for unit commitment considers uncertainty and ramping of wind power, frequency regulation capacity, spinning reserve, demand response, and pumped-storage hydroelectricity. Two reserve capacities including primary frequency regulation and spinning reserve are designed to handle the intermittency and ramping of renewable energies. In order to optimize the costs, the pumped-storage hydroelectricity and demand response program are also included to deal with ramping and uncertainty. The numerical results specify that the arrangement of frequency regulation capacity, pumped-storage system and demand response can effectively tackle both the ramping and uncertainty. The system includes 10-generator with total power equal to 1070 MW and one wind generator with 300 MW power. The initial wind integration level is about 28%. It is verified that decreasing the frequency regulation capacity by 10% reduces wind integration level by 94%. The demand response and pumped-storage increase wind integration level by 10% and 16%; while both together increase wind integration by 25% compared to the initial level. The wind integration level without large wind ramping can be increased up to 200%.

中文翻译:

与大型风坡整合的机组组合中的频率调节管理多种容量资源

有效的机组承诺计划必须在模型中考虑频率调节能力。由于可再生能源的增长和不确定性,在可再生能源的高渗透水平下,此类模型更加复杂。本文在单位承诺中解决了这些问题。拟议的机组承诺模型考虑了风力发电的不确定性和坡度,频率调节能力,旋转储备,需求响应以及抽水蓄能水电。设计了两种备用容量,包括一次频率调节和旋转备用,以处理可再生能源的间歇性和上升性。为了优化成本,还包括抽水蓄能水电和需求响应程序,以应对升温和不确定性。数值结果表明,调频能力,抽水蓄能系统和需求响应的安排可以有效地解决斜坡和不确定性问题。该系统包括总功率等于1070 MW的10台发电机和一台300 MW的风力发电机。初始风能集成水平约为28%。事实证明,将调频能力降低10%,风能集成水平将降低94%。需求响应和抽水蓄能使风能集成水平提高了10%和16%;两者的结合使风能集成度比初始水平提高了25%。无需大风速倾斜的风能集成度可以提高到200%。该系统包括总功率等于1070 MW的10台发电机和一台300 MW的风力发电机。初始风能集成水平约为28%。事实证明,将调频能力降低10%,风能集成水平将降低94%。需求响应和抽水蓄能使风能集成水平提高了10%和16%;两者合起来使风速集成度比初始水平提高了25%。无需大风速倾斜的风能集成度可以提高到200%。该系统包括总功率等于1070 MW的10台发电机和一台300 MW的风力发电机。初始风能集成水平约为28%。事实证明,将调频能力降低10%,风能集成水平将降低94%。需求响应和抽水蓄能使风能集成水平提高了10%和16%;两者的结合使风能集成度比初始水平提高了25%。无需大风速倾斜的风能集成度可以提高到200%。两者的结合使风能集成度比初始水平提高了25%。无需大风速倾斜的风能集成度可以提高到200%。两者合起来使风速集成度比初始水平提高了25%。无需大风速倾斜的风能集成度可以提高到200%。
更新日期:2020-08-18
down
wechat
bug