当前位置: X-MOL 学术IETE Tech. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Asymmetric-Elevated-Source-Drain TFET: A Fairly Scalable and Reliable Device Architecture for Sub-400-mV Low-Stand-by-Power Digital Applications
IETE Technical Review ( IF 2.5 ) Pub Date : 2020-12-09 , DOI: 10.1080/02564602.2020.1852120
Suman Das 1, 2 , Avik Chattopadhyay 2 , Suchismita Tewari 2
Affiliation  

In this paper, silicon-based Asymmetric-Elevated-Source-Drain Tunnel Field-Effect Transistor (AESD-TFET), for gate lengths (LGs), viz. 70, 45, 32, 22, and 13 nm, is investigated for the first time to find its suitability in sub-400-mV low-stand-by-power (LSTP) digital operation, followed by finding its reliability and stability against the adverse effect of Positive Bias Temperature Instability (PBTI) for LG = 13 nm corresponding to the (recent) state-of-the-art technology node for the “More Moore” options in realizing LSTP digital functions. The whole work is executed with the help of 2-D numerical methods, via a model-calibration against a couple of experimental works on Elevated-Drain TFET (ED-TFET) and Elevated-Source TFET (ES-TFET), respectively, followed by a comparison of performances between the three, in terms of threshold voltage (VT), average subthreshold swing (SSavg), OFF-state current (IOFF), ION/IOFF ratio, OFF-state leakage power, and drain-induced barrier lowering (DIBL), and then a measurement of shifts in VT, IOFF, ION/IOFF, and SSavg for different PBTI stress conditions for temperature ≥ 300 K. For the optimum value of LG (i.e. 13 nm), a reduction of 56% and 66% in DIBL, a drop of 15.84% and 45.74% in SSavg, a reduction of about 1 decade and 3 decades in IOFF, and an improvement of nearly 1 decade and 2 decades in ION/IOFF have been obtained for the AESD-TFET against the ES- and ED-TFET devices, respectively. The same has also been found to show maximum stability against the PBTI effect under the two-temperature conditions (i.e. 300 K and 398 K) in terms of IOFF, ION/IOFF and SSavg with the lowest possible shifts in VT (∼ 0%) and SSavg (9%), besides maintaining the most excellent absolute values of the aforesaid parameters.



中文翻译:

非对称提升源漏 TFET:一种可扩展且可靠的器件架构,适用于低于 400mV 的低待机功耗数字应用

在本文中,基于硅的非对称高架源漏隧道场效应晶体管 (AESD-TFET),用于栅极长度 (L G s),即。70、45、32、22 和 13 nm,首次研究发现其在低于 400 mV 的低待机功耗 (LSTP) 数字操作中的适用性,随后发现其可靠性和稳定性正偏压温度不稳定性 (PBTI) 对 L G的不利影响= 13 nm,对应于(最近的)最先进的技术节点,用于实现 LSTP 数字功能的“更多摩尔”选项。整个工作是在二维数值方法的帮助下执行的,通过模型校准分别针对高漏极 TFET (ED-TFET) 和高源源 TFET (ES-TFET) 的几个实验工作,然后通过三者之间的性能比较,在阈值电压(V T)、平均亚阈值摆幅(SS avg)、关闭状态电流(I OFF)、I ON /I OFF比、关闭状态泄漏功率和漏极势垒降低 (DIBL),然后测量 V T、 I OFF、 I ON的变化/I OFF , and SS avg for different PBTI stress conditions for temperature ≥ 300 K. 对于 L G的最佳值(13 nm),DIBL 降低 56% 和 66%,降低 15.84% 和 45.74%在 SS avg中, AESD-TFET 与 ES- 和 ED-TFET 器件相比,I OFF减少了大约 1 个和 3个十年,I ON /I OFF提高了近 1 个和 2 个十年, 分别。在 I OFF和 I ON的两个温度条件下(300 K 和 398 K),同样发现对 PBTI 效应具有最大稳定性/I OFF和 SS avg在 V T (∼ 0%) 和 SS avg (9%) 中的可能变化最小,此外还保持上述参数的最佳绝对值。

更新日期:2020-12-09
down
wechat
bug