当前位置: X-MOL 学术J. Phys. B: At. Mol. Opt. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical study of evaporative cooling in the space station
Journal of Physics B: Atomic, Molecular and Optical Physics ( IF 1.5 ) Pub Date : 2020-12-09 , DOI: 10.1088/1361-6455/abc72d
Bo Fan 1 , Luheng Zhao 2 , Yin Zhang 1 , Jingxin Sun 1 , Wei Xiong 1 , Jinqiang Chen 3 , Xuzong Chen 1
Affiliation  

In this paper, we numerically studied the effects of mechanical vibration and magnetic fields on evaporative cooling process carried in space station by direct simulation Monte Carlo method. Simulated with the vibration data of international space station, we found that the cooling process would suffer great atomic losses until the accelerations reduced tenfold at least. In addition, if we enlarge the s-wave scattering length five times by feshbach resonance, the phase space density increased to 50 compared to 3 of no magnetic fields situation after 5s evaporative cooling. We also simulated the two stages crossed beam evaporative cooling process under both physical impacts and obtain 4 105 85Rb atoms with a temperature of 8 pK. These results are of significance to the cold atom experiments carried out on space station in the future.



中文翻译:

空间站蒸发冷却的数值研究

本文通过直接模拟蒙特卡洛方法,数值研究了机械振动和磁场对空间站蒸发冷却过程的影响。根据国际空间站的振动数据,我们发现冷却过程将遭受巨大的原子损失,直到加速度至少降低十倍。另外,如果通过feshbach共振将s波的散射长度扩大5倍,则与5s的蒸发冷却后的无磁场的情况相比,相空间密度增加到50。我们还模拟了在两种物理冲击下的两阶段横梁蒸发冷却过程,得出4 10 5 85Rb原子的温度为8 pK。这些结果对未来在空间站进行的冷原子实验具有重要意义。

更新日期:2020-12-09
down
wechat
bug