当前位置: X-MOL 学术Int. J. Aerosp. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A New Erosive Burning Model of Solid Propellant Based on Heat Transfer Equilibrium at Propellant Surface
International Journal of Aerospace Engineering ( IF 1.1 ) Pub Date : 2020-12-09 , DOI: 10.1155/2020/8889333
Yanjie Ma 1 , Futing Bao 1 , Lin Sun 1 , Yang Liu 1 , Weihua Hui 1
Affiliation  

Erosive burning refers to the augmentation of propellant burning rate appears when the velocity of combustion gas flowing parallel to the propellant surface is relatively high. Erosive burning can influence the total burning rate of propellant and performance of solid rocket motors dramatically. There have been many different models to evaluate erosive burning rate for now. Yet, due to the complication processes involving in propellant and solid rocket motor combustion, unknown constants often exist in these models. To use these models, trial-and-error procedure must be implemented to determine the unknown constants firstly. This makes many models difficult to estimate erosive burning before plenty of experiments. In this paper, a new erosive burning rate model is proposed based on the assumption that the erosive burning rate is proportional to the heat flux at the propellant surface. With entrance effect, roughness, and transpiration considered, convective heat transfer coefficient correlation proposed in recent years is used to compute the heat flux. This allows the release of unknown constants, making the model universal and easy to implement. The computational data of the model are compared with different experimental and computational data from different models. Results show that good accuracy (10%) with experiments can be achieved by this model. It is concluded that the present model could be used universally for erosive burning rate evaluation of propellant and performance prediction of solid rocket motor as well.

中文翻译:

基于推进剂表面传热平衡的固体推进剂侵蚀燃烧新模型

侵蚀燃烧是指当平行于推进剂表面流动的燃烧气体的速度相对较高时,出现推进剂燃烧速率的增加。侵蚀性燃烧会严重影响推进剂的总燃烧速率和固体火箭发动机的性能。目前,有许多不同的模型来评估侵蚀燃烧速率。然而,由于涉及推进剂和固体火箭发动机燃烧的复杂过程,这些模型中经常存在未知常数。要使用这些模型,必须先执行反复试验程序以确定未知常数。这使得许多模型在大量实验之前难以估计侵蚀燃烧。在本文中,基于侵蚀燃烧速率与推进剂表面热流成比例的假设,提出了一种新的侵蚀燃烧速率模型。考虑到入口效应,粗糙度和蒸腾作用,近年来提出的对流换热系数相关性被用于计算热通量。这允许释放未知常量,从而使模型通用且易于实现。将模型的计算数据与来自不同模型的不同实验和计算数据进行比较。结果表明,通过该模型可以实现较高的实验精度(10%)。结论是,该模型可普遍用于推进剂的侵蚀燃烧速率评估和固体火箭发动机的性能预测。考虑到入口效应,粗糙度和蒸腾作用,近年来提出的对流换热系数相关性被用于计算热通量。这允许释放未知常量,从而使模型通用且易于实现。将模型的计算数据与来自不同模型的不同实验和计算数据进行比较。结果表明,通过该模型可以实现较高的实验精度(10%)。结论是,该模型可普遍用于推进剂的侵蚀燃烧速率评估和固体火箭发动机的性能预测。考虑到入口效应,粗糙度和蒸腾作用,近年来提出的对流换热系数相关性用于计算热通量。这允许释放未知常量,从而使模型通用且易于实现。将模型的计算数据与来自不同模型的不同实验和计算数据进行比较。结果表明,通过该模型可以实现较高的实验精度(10%)。结论是,该模型可普遍用于推进剂的侵蚀燃烧速率评估和固体火箭发动机的性能预测。使模型通用且易于实施。将模型的计算数据与来自不同模型的不同实验和计算数据进行比较。结果表明,通过该模型可以实现较高的实验精度(10%)。结论是,该模型可普遍用于推进剂的侵蚀燃烧速率评估和固体火箭发动机的性能预测。使模型通用且易于实施。将模型的计算数据与来自不同模型的不同实验和计算数据进行比较。结果表明,通过该模型可以实现较高的实验精度(10%)。结论是,该模型可普遍用于推进剂的侵蚀燃烧速率评估和固体火箭发动机的性能预测。
更新日期:2020-12-09
down
wechat
bug