当前位置: X-MOL 学术Int. J. Refract. Met. Hard Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrahigh transverse rupture strength in tungsten-based nanocomposites with minimal lattice misfit and dual microstructure
International Journal of Refractory Metals & Hard Materials ( IF 4.2 ) Pub Date : 2020-12-08 , DOI: 10.1016/j.ijrmhm.2020.105454
D. Chakravarty , N. Laxman , R. Jayasree , R.B. Mane , S. Mathiazhagan , P.V.V. Srinivas , R. Das , M. Nagini , M. Eizadjou , L. Venkatesh , N. Ravi , D.R. Mahapatra , R. Vijay , S.P. Ringer , C.S. Tiwary

New-generation structural materials with superior properties are a constant demand in applications involving extreme environments. Here, we demonstrate the fabrication of a high-strength, high-dense W-TaC-Ta2O5 nanocomposite for such applications on a large scale by a simple, cost-effective, scalable, bottom-up powder metallurgy approach using plasma sintering. The first clear microstructural evidence of the scavenging effect of carbide particles in the W-MC composites (M = Ta, Zr, Hf, Ti) is demonstrated through atom probe studies. Localized plastic deformation and the unique stress-induced amorphization in tungsten are observed due to dislocation activities, and these phenomena are corroborated by molecular dynamics (MD) simulations. Optimized composition and processing conditions yield high Vickers hardness ~540 HV10 and super-high transverse rupture strength (TRS) ~ 1650 MPa, in upscaled components of 100 mm diameter. The enhanced mechanical properties are attributed to the cumulative effect of the grain boundary strengthening and dispersion strengthening from the refined tungsten grains and the second phase intragranular nanocrystalline particles, respectively, the coherent particle-matrix interfaces, the low oxygen-segregation at grain boundaries and the ‘dual nanocrystalline-amorphous’ microstructure present in the matrix.



中文翻译:

具有最小晶格失配和双重微观结构的钨基纳米复合材料的超高横向断裂强度

具有优异性能的新一代结构材料在涉及极端环境的应用中一直存在需求。在这里,我们演示了高强度,高密度W-TaC-Ta 2 O 5的制备纳米复合材料通过使用等离子烧结的简单,经济高效,可扩展,自下而上的粉末冶金方法大规模用于此类应用。通过原子探针研究证明了W-MC复合材料(M = Ta,Zr,Hf,Ti)中碳化物颗粒清除作用的第一个清晰的微观结构证据。由于位错活动,观察到钨中的局部塑性变形和独特的应力诱发的非晶化,并且这些现象通过分子动力学(MD)模拟得到了证实。优化的成分和加工条件可产生约540 HV的高维氏硬度10在直径为100 mm的高档零件中,具有超过1650 MPa的超高横向断裂强度(TRS)。增强的机械性能分别归因于精炼钨晶粒和第二相晶粒内纳米晶体颗粒,相干颗粒-基体界面,晶界处的低氧偏析和晶界处的晶界强化和弥散强化的累积效应。基质中存在“双纳米晶体-非晶”微结构。

更新日期:2020-12-28
down
wechat
bug