当前位置: X-MOL 学术Int. J. Precis. Eng. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational Studies on Mesh Stiffness of Paralleled Helical Beveloid Gear Pair
International Journal of Precision Engineering and Manufacturing ( IF 1.9 ) Pub Date : 2020-12-08 , DOI: 10.1007/s12541-020-00452-3
Ruihua Sun , Chaosheng Song , Caichao Zhu , Yawen Wang , Xingyu Yang

Considering the asymmetrical left and right tooth profiles including the transient curve at the tooth root region and the varying thickness along the axial direction due to the cone angle, we build the accurate profile curve model including the transient curve at the tooth root of helical beveloid gear with machining parameters to solve the problem of non-applicability of real digital model. According to the feature of gear shape varying along tooth width direction, we introduced the slicing method and derived its grouping formula. Finally, the efficient and accurate slicing-based mesh stiffness calculation model of paralleled helical beveloid gears was proposed using potential energy theory. Then, mesh stiffness was calculated using finite element contact model for comparison and verification. Finally, the impacts of macro geometry parameters including cone angle, normal pressure angle, helix angle, tooth width and addendum coefficient on single and total mesh stiffness were analyzed. The calculated mesh stiffness correlates well with the results from FEM with the maximum peak error is 4.8%. Results show that the tooth width shows an obvious incremental impact on average total mesh stiffness. When the pressure angle, helix angle, cone angle and addendum coefficient increase, the average total mesh stiffness increases first and then decreases. For the fluctuating value, it increases as the tooth width, helix angle and cone angle increase. However, the pressure angle and addendum coefficient show an opposite impact on the fluctuating value.



中文翻译:

平行斜齿轮锥齿轮副啮合刚度的计算研究。

考虑到不对称的左右齿廓,包括齿根区域的瞬变曲线和由于锥角而沿轴向变化的厚度,我们建立了精确的齿廓曲线模型,包括斜齿面锥齿轮齿根的瞬变曲线。用加工参数来解决实际数字模型不适用的问题。根据齿轮形状沿齿宽方向变化的特点,介绍了切片方法并推导了其分组公式。最后,基于势能理论,提出了一种基于切片的高效,精确的平行斜齿轮齿轮啮合刚度计算模型。然后,使用有限元接触模型计算网格刚度,以进行比较和验证。最后,分析了包括锥角,法向压力角,螺旋角,齿宽和齿顶系数在内的宏观几何参数对单个和总网格刚度的影响。计算的网格刚度与FEM的结果非常相关,最大峰值误差为4.8%。结果表明,齿宽对平均总网格刚度有明显的增量影响。当压力角,螺旋角,锥角和齿顶系数增加时,平均总网格刚度会先增大然后减小。对于波动值,它随着齿宽,螺旋角和锥角的增加而增加。但是,压力角和齿顶系数对波动值显示相反的影响。分析了单齿和总齿刚度的齿宽和齿顶系数。计算的网格刚度与FEM的结果非常相关,最大峰值误差为4.8%。结果表明,齿宽对平均总网格刚度有明显的增量影响。当压力角,螺旋角,锥角和齿顶系数增加时,平均总网格刚度会先增大然后减小。对于波动值,它随着齿宽,螺旋角和锥角的增加而增加。但是,压力角和齿顶系数对波动值显示相反的影响。分析了单齿和总齿刚度的齿宽和齿顶系数。计算的网格刚度与FEM的结果非常相关,最大峰值误差为4.8%。结果表明,齿宽对平均总网格刚度有明显的增量影响。当压力角,螺旋角,锥角和齿顶系数增加时,平均总网格刚度会先增大然后减小。对于波动值,它随着齿宽,螺旋角和锥角的增加而增加。但是,压力角和齿顶系数对波动值显示相反的影响。结果表明,齿宽对平均总网格刚度有明显的增量影响。当压力角,螺旋角,锥角和齿顶系数增加时,平均总网格刚度会先增大然后减小。对于波动值,它随着齿宽,螺旋角和锥角的增加而增加。但是,压力角和齿顶系数对波动值显示相反的影响。结果表明,齿宽对平均总网格刚度有明显的增量影响。当压力角,螺旋角,锥角和齿顶系数增加时,平均总网格刚度会先增大然后减小。对于波动值,它随着齿宽,螺旋角和锥角的增加而增加。但是,压力角和齿顶系数对波动值显示相反的影响。

更新日期:2020-12-08
down
wechat
bug