当前位置: X-MOL 学术Comput. Math. Math. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Hybrid Method for the Computation of a Rarefied Gas Jet Efflux through a Very Long Channel into Vacuum
Computational Mathematics and Mathematical Physics ( IF 0.7 ) Pub Date : 2020-12-08 , DOI: 10.1134/s0965542520110135
V. A. Titarev , E. M. Shakhov

Abstract

On the basis of the kinetic model, the steady efflux of monatomic gas from a high pressure camera (the Knudsen number \({\text{Kn}} \ll 1\)) through a long channel between two parallel plates into a vacuum camera under a constant temperature on the bounding surfaces is studied. Using asymptotic estimates for relatively long channels, the flow domain is divided into three subdomains: (1) a neighborhood of the channel entry, (2) the main part of the flow in the channel that occupies almost all channel length, and (3) a neighborhood of the channel exit. The flow in subdomain (1) is not considered due to its low speed. In the main subdomain (2), the flow is slow and is driven by a low pressure gradient (the diffusion area). In subdomain (3), the flow gets faster, and the gas expands in the channel and in the vacuum camera. In subdomain (2), we have the continuum flow regime, and the well-known results of the linear one-dimensional theory of viscous gas flows in long channels (Poiseuille flow) are used. In the subdomain of fast flow, the full nonlinear kinetic equation (S-model) is used. The condition of asymptotic matching of solutions in two subdomains is replaced by the boundary condition of solution coupling in a certain section the position of which is chosen from the smoothness condition of the full solution of the problem. The kinetic equation is solved by the method of time marching to steady state using the conservative second-order scheme with respect to all variables implemented in Nesvetay software package. The proposed solution method can be considered as a hybrid one because the Navier–Stokes and kinetic equations are solved simultaneously.



中文翻译:

稀有气体射流通过超长通道进入真空的计算的混合方法

摘要

在动力学模型的基础上,来自高压摄像机的单原子气体的稳定流出(克努森数\({\ text {Kn}} \ ll 1 \))通过两个平行板之间的长通道进入边界条件下恒温的真空摄像机。使用相对较长通道的渐近估计,流域被分为三个子域:(1)通道入口的邻域;(2)通道中流的几乎占据所有通道长度的主要部分;(3)通道出口附近。子域(1)中的流由于速度低而未被考虑。在主子域(2)中,流动缓慢,并由低压梯度(扩散区域)驱动。在子域(3)中,流速变快,气体在通道和真空摄像机中膨胀。在子域(2)中,我们有连续流态,并使用了粘性气体在长通道中的线性一维理论(Poiseuille流)的众所周知的结果。在快速流动的子域中,使用了完整的非线性动力学方程(S模型)。两个子域中解的渐近匹配条件被某个部分中解耦合的边界条件所代替,该边界的位置是从问题的完全解的光滑性条件中选择的。对于在Nesvetay软件包中实现的所有变量,使用保守的二阶方案通过采用时间步入稳态的方法来求解动力学方程。可以将提出的求解方法视为一种混合方法,因为同时可以求解Navier-Stokes和动力学方程。使用完整的非线性动力学方程(S模型)。两个子域中解的渐近匹配条件被某个部分中解耦合的边界条件所代替,该边界的位置是从问题的完全解的光滑性条件中选择的。对于在Nesvetay软件包中实现的所有变量,使用保守的二阶方案通过采用时间步入稳态的方法来求解动力学方程。可以将提出的求解方法视为一种混合方法,因为同时可以求解Navier-Stokes和动力学方程。使用完整的非线性动力学方程(S模型)。两个子域中解的渐近匹配条件被某个部分中解耦合的边界条件所代替,该边界的位置是从问题的完全解的光滑性条件中选择的。对于在Nesvetay软件包中实现的所有变量,使用保守的二阶方案通过采用时间步入稳态的方法来求解动力学方程。可以将提出的求解方法视为一种混合方法,因为同时可以求解Navier-Stokes和动力学方程。两个子域中解的渐近匹配条件被某个部分中解耦合的边界条件所代替,该边界的位置是从问题的完全解的光滑性条件中选择的。对于在Nesvetay软件包中实现的所有变量,使用保守的二阶方案通过采用时间步入稳态的方法来求解动力学方程。可以将提出的求解方法视为一种混合方法,因为同时可以求解Navier-Stokes和动力学方程。两个子域中解的渐近匹配条件被某个部分中解耦合的边界条件所代替,该边界的位置是从问题的完全解的光滑性条件中选择的。对于在Nesvetay软件包中实现的所有变量,使用保守的二阶方案通过采用时间步入稳态的方法来求解动力学方程。可以将提出的求解方法视为一种混合方法,因为同时可以求解Navier-Stokes和动力学方程。

更新日期:2020-12-08
down
wechat
bug