Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct-drive laser fusion: status, plans and future
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences ( IF 5 ) Pub Date : 2020-12-07 , DOI: 10.1098/rsta.2020.0011
E M Campbell 1 , T C Sangster 1 , V N Goncharov 1 , J D Zuegel 1 , S F B Morse 1 , C Sorce 1 , G W Collins 1 , M S Wei 1 , R Betti 1 , S P Regan 1 , D H Froula 1 , C Dorrer 1 , D R Harding 1 , V Gopalaswamy 1 , J P Knauer 1 , R Shah 1 , O M Mannion 1 , J A Marozas 1 , P B Radha 1 , M J Rosenberg 1 , T J B Collins 1 , A R Christopherson 1 , A A Solodov 1 , D Cao 1 , J P Palastro 1 , R K Follett 1 , M Farrell 2
Affiliation  

Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser–plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser–plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the ‘polar-drive’ configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.

中文翻译:

直接驱动激光聚变:现状、计划和未来

激光直接驱动(LDD)以及激光间接(X射线)驱动(LID)和脉冲功率磁驱动是在实验室中实现聚变点火和增益的三种可行的惯性约束聚变方法之一。LDD 项目主要在激光能量学实验室的欧米茄激光设施和劳伦斯利弗莫尔国家实验室的国家点火设施 (NIF) 执行。Omega 的 LDD 研究包括低温内爆、基础物理学(包括材料特性)、流体动力学和激光等离子体相互作用物理学。LDD 对 NIF 的研究重点是点火级等离子体的能量耦合和激光-等离子体相互作用物理。在“极驱动”配置中,NIF 上的有限内爆也是 LDD 研究的一个特点,其中辐照几何形状是为 LID 配置的。使用 Omega 和 NIF 对大范围的能量、功率和尺度尺寸进行研究的能力是 LDD 研究的一个主要积极方面,它降低了从 OMEGA 到兆焦耳级激光器的尺度风险。论文将总结LDD的研究现状和未来的计划,目标是最终在实验室实现燃烧等离子体。本文是讨论会议问题“高增益惯性聚变能的前景(第 2 部分)”的一部分。
更新日期:2020-12-07
down
wechat
bug