Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences ( IF 4.3 ) Pub Date : 2020-12-07 , DOI: 10.1098/rsta.2020.0052
D. Kawahito 1 , M. Bailly-Grandvaux 1 , M. Dozières 1 , C. McGuffey 1 , P. Forestier-Colleoni 1 , J. Peebles 2 , J. J. Honrubia 3 , B. Khiar 4 , S. Hansen 5 , P. Tzeferacos 2, 6 , M. S. Wei 2, 7 , C. M. Krauland 7 , P. Gourdain 6, 8 , J. R. Davies 2 , K. Matsuo 9 , S. Fujioka 9 , E. M. Campbell 2 , J. J. Santos 10 , D. Batani 10 , K. Bhutwala 1 , S. Zhang 1 , F. N. Beg 1
Affiliation  

Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches 9.0 g cm−3, the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.

中文翻译:

磁化内爆圆柱形等离子体中的快速电子传输动力学和能量沉积

惯性约束聚变方法涉及通过压缩产生高能量密度状态。高增益场景可以通过强激光产生的快速电子的有益加热和高强度磁场的能量遏制来实现。在这里,我们报告了从集成磁化内爆圆柱形等离子体和强激光驱动电子的配置以及多级模拟的实验测量,这些模拟显示了内爆期间不同时间的快速电子传输路径,并量化了它们的能量沉积贡献。实验由一个 CH 泡沫圆柱体组成,在 5 T 的外部同轴磁场内,使用 36 束 OMEGA 激光束内爆。二维 (2D) 流体动力学模型预测 CH 密度达到 9.0 g cm−3,温度达到 920 eV,外部 B 场在最大压缩时放大到 580 T。在压缩期间的预定时间,强烈的 OMEGA EP 激光照射圆柱体的一端,以加速相对论电子进入致密的内爆等离子体,提供额外加热。相对论电子束生成使用二维粒子在细胞 (PIC) 代码进行模拟。最后,三维混合 PIC 模拟计算了靶内的电子传播和能量沉积,并揭示了压缩和自生 B 场在传输中的作用。在最大压缩时间之前的时间窗口内,压缩前沿上的自生 B 场将注入的电子限制在目标内部,通过焦耳加热提高温度。对于 20 T 的更强 B 场种子,预计电子将被引导到压缩目标中并提供额外的碰撞加热。本文是讨论会议问题“高增益惯性聚变能的前景(第 2 部分)”的一部分。
更新日期:2020-12-07
down
wechat
bug