当前位置: X-MOL 学术Commun. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Imprinting and driving electronic orbital magnetism using magnons
Communications Physics ( IF 5.5 ) Pub Date : 2020-12-07 , DOI: 10.1038/s42005-020-00490-3
Li-chuan Zhang , Dongwook Go , Jan-Philipp Hanke , Patrick M. Buhl , Sergii Grytsiuk , Stefan Blügel , Fabian R. Lux , Yuriy Mokrousov

Magnons, as the most elementary excitations of magnetic materials, have recently emerged as a prominent tool in electrical and thermal manipulation and transport of spin, and magnonics as a field is considered as one of the pillars of modern spintronics. On the other hand, orbitronics, which exploits the orbital degree of freedom of electrons rather than their spin, emerges as a powerful platform in efficient design of currents and redistribution of angular momentum in structurally complex materials. Here, we uncover a way to bridge the worlds of magnonics and electronic orbital magnetism, which originates in the fundamental coupling of scalar spin chirality, inherent to magnons, to the orbital degree of freedom in solids. We show that this can result in efficient generation and transport of electronic orbital angular momentum by magnons, thus opening the road to combining the functionalities of magnonics and orbitronics to their mutual benefit in the realm of spintronics applications.



中文翻译:

使用磁振子烙印和驱动电子轨道磁场

磁振子是磁性材料中最基本的激发,最近已成为电学和热学操纵以及自旋传输的重要工具,而作为磁场的磁强学被认为是现代自旋电子学的支柱之一。另一方面,利用电子的轨道自由度而不是电子自旋的Orbitronics成为有效设计电流和在结构复杂的材料中重新分配角动量的有力平台。在这里,我们揭示了一种将马诺尼克斯和电子轨道磁学世界联系起来的方法,这种方法起源于马诺尼克斯固有的标量自旋手性与固体的轨道自由度之间的基本耦合。我们证明,这可以导致磁振子有效地产生和传输电子轨道角动量,

更新日期:2020-12-07
down
wechat
bug