当前位置: X-MOL 学术Environ. MicroBiol. Rep › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Viral discovery in the ‘realm’ of COVID‐19
Environmental Microbiology Reports ( IF 3.6 ) Pub Date : 2020-12-01 , DOI: 10.1111/1758-2229.12912
Kalia Bistolas 1 , Rebecca Vega Thurber 1
Affiliation  

As we sit six feet apart in the San Francisco airport terminal, waiting for a flight to our field site, we hear an attendant's voice echoing, ‘All passengers must provide proof of a negative RT‐qPCR COVID‐19 test prior to boarding the airplane’. A year ago, we would have been hard‐pressed to hear such terminology on any loudspeaker in a major US airport. But a year ago, we were not mid‐pandemic. When we reach the front of the boarding line, the attendant checks our documentation as another scans the crowd for anyone looking ill, sweating, coughing. In the corner, a teenager reads about viral replication in the New York Times (Corum and Zimmer, 2020). Another few rows over, a child is teaching his two stuffed dinosaurs ‐ both wearing tiny masks ‐ how to properly distance themselves. After we land in French Polynesia, we are briefed by an army of attendants and biosafety agents on what COVID‐19 is, how SARS‐CoV‐2 is transmitted, and how to self‐administer a diagnostic test and return it to a local processing facility.

This is virology gone mainstream.

For anyone who has witnessed and characterized epizootics and heard the many predictions of the next major emerging infectious disease (EID) in wildlife, humans, or both (Ogden et al., 2017), this has been a surreal experience. The surfacing and spread of SARS‐CoV‐2 has been an explicit (and sobering) reminder that increased human interaction with wildlife and habitat encroachment pose a threat not only to wildlife health but our own. As human influence advances, these potential threats extend beyond the terrestrial and into aquatic ecosystems through the aquaculture we consume, the waterways we utilize, and the organisms we increasingly encounter (Cotruvo et al., 2013). The magnitude and frequency of mass mortality events (MMEs) within marine ecosystems are escalating incrementally, although it is often unclear if these are due to greater detection efforts or external factors such as pollution and thermal stress mediated by climate change (Fey et al., 2015; Sanderson and Alexander, 2020). Uniting trends in the emergence of marine epizootics have included changes in either (i) host distribution (e.g. the joined proximity of normally allopatric species through alterations in land use, trade, travel, or migration, and increases in host density) or (ii) microbial phenotype (e.g. change in transmissibility, pathogenicity, or host niche through genetic adaptation) (Daszak, 2000; Ogden et al., 2017).

In marine mammals, a recent study concluded that 72% of MMEs were likely attributable to viral pathogens, indicating unique attributes for spillover and transmissibility as EIDs and reflecting their potential zoonotic threat (Sanderson and Alexander, 2020). These viruses pose risks to aquatic community stability, biodiversity, conservation efforts and aquaculture economy, and do not appear to be isolated from terrestrial ecosystems. For example, evidence of multiple instances of morbillivirus infection (e.g. canine distemper ) spillover from domesticated dogs to pinnipeds suggest proximity of the two hosts may have played a factor, arbovirus identification (e.g. mosquito‐borne togaviruses and flaviviruses in cetaceans) may be indicative of viral vectoring by terrestrial invertebrates, and the atypical spread of a herpesvirus‐like MME among pilchards (Australia, 1995–98) suggest involvement of seabirds (Lafferty and Harvell, 2014; Bossart and Duignan, 2018). This epizootic among pilchards also showed the ability of marine viruses to spread rapidly (5000 km in 7 months), further driving the hypothesis that MMEs may advance faster in aquatic ecosystems (due to water having a higher connectivity and lower granularity than air), with pathogens exploiting indirect mechanisms of infection (Harvell, 1999; McCallum et al., 2004). The biological and economic results of such fast‐spreading MMEs can be dramatic. This MME among pilchards alone resulted in >$12 million AUD loss to the Australian aquaculture industry over a 3‐year period. Yet this value is an extraordinarily trivial value compared with the billions of dollars lost to epizootics in penaeid shrimp, oysters, abalone, lobster, and other invertebrates and countless other viral pathogens exerting pressure on fisheries and aquatic cultivation industries worldwide (Lafferty et al., 2015).



中文翻译:

COVID-19“领域”中的病毒发现

当我们坐在旧金山机场航站楼相距六英尺的地方等待飞往我们现场的航班时,我们听到一名乘务员的声音在回响,“所有乘客必须在登机前提供 RT-qPCR COVID-19 测试阴性的证明'。一年前,我们很难在美国主要机场的任何扬声器上听到这样的术语。但一年前,我们还没有处于大流行中期。当我们到达登机线的最前面时,乘务员会检查我们的文件,而另一名乘务员则在人群中扫描是否有人生病、出汗、咳嗽。角落里,一名少年在《纽约时报》上阅读有关病毒复制的文章(Corum and Zimmer,2020)。再过几排,一个孩子正在教他的两只毛绒玩具恐龙——都戴着小面具——如何正确地保持距离。在我们抵达法属波利尼西亚后,一大群服务员和生物安全人员向我们简要介绍了什么是 COVID-19、SARS-CoV-2 是如何传播的,以及如何自行进行诊断测试并将其返回本地处理设施。

这是病毒学成为主流。

对于任何目睹和描述动物流行病并听到关于野生动物、人类或两者的下一个主要新兴传染病 (EID) 的许多预测的人(Ogden等人2017 年),这是一次超现实的经历。SARS-CoV-2 的出现和传播明确地(并且发人深省)提醒人们,人类与野生动物的互动增加以及栖息地的侵占不仅对野生动物的健康构成威胁,而且对我们自己的健康构成威胁。随着人类影响的发展,这些潜在威胁通过我们消费的水产养殖、我们利用的水道以及我们越来越多地遇到的生物,扩展到陆地以外的水生生态系统(Cotruvo et al ., 2013)。海洋生态系统中大规模死亡事件 (MME) 的规模和频率正在逐步升级,尽管通常不清楚这些是由于更大的检测工作还是由于气候变化介导的污染和热应力等外部因素(Fey等人2015 年;桑德森和亚历山大,2020 年)。海洋动物流行病出现的统一趋势包括(i)宿主分布的变化(例如,通过改变土地利用、贸易、旅行或迁移以及宿主密度的增加,正常异域物种的联合接近)或(ii)微生物表型(例如通过遗传适应改变可传播性、致病性或宿主生态位)(Daszak,2000 年;Ogden等人2017 年)。

在海洋哺乳动物中,最近的一项研究得出结论,72% 的 MME 可能归因于病毒病原体,这表明 EID 具有溢出和传播性的独特属性,并反映了它们潜在的人畜共患病威胁(Sanderson 和 Alexander,2020)。这些病毒对水生群落稳定性、生物多样性、保护工作和水产养殖经济构成风险,而且似乎并未与陆地生态系统隔离。例如,多起麻疹病毒感染(例如犬瘟热)从驯养的狗传播到鳍足类动物的证据表明,两个宿主的接近可能是一个因素,虫媒病毒的鉴定(例如鲸类中的蚊媒披膜病毒和黄病毒)可能表明陆生无脊椎动物的病毒载体,以及类似疱疹病毒的 MME 在沙丁鱼中的非典型传播(澳大利亚,1995-98 年)表明海鸟的参与(Lafferty 和 Harvell,2014 年;Bossart 和 Duignan,2018 年))。沙丁鱼中的这种动物流行病还显示了海洋病毒快速传播的能力(7 个月内传播 5000 公里),进一步推动了 MME 可能在水生生态系统中发展得更快的假设(由于水比空气具有更高的连通性和更低的粒度),与利用间接感染机制的病原体(Harvell,1999;McCallum2004)。这种快速传播的 MME 的生物学和经济结果可能是巨大的。仅沙丁鱼中的这种 MME 就导致澳大利亚水产养殖业在 3 年内损失超过 1200 万澳元。然而,与对虾、牡蛎、鲍鱼、龙虾和其他无脊椎动物的流行病以及对全球渔业和水产养殖业施加压力的无数其他病毒病原体造成的数十亿美元的损失相比,这个价值是非常微不足道的(Lafferty et al ., 2015 年)。

更新日期:2021-01-29
down
wechat
bug