当前位置: X-MOL 学术Agric. Water Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain
Agricultural Water Management ( IF 5.9 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.agwat.2020.106685
Dengpan Xiao , De Li Liu , Puyu Feng , Bin Wang , Cathy Waters , Yanjun Shen , Yongqing Qi , Huizi Bai , Jianzhao Tang

Abstract Crop production in the North China Plain (NCP) is heavily influenced by the unfolding climate change and water shortage. Groundwater overdraft for irrigation in this region has caused serious ecological and environmental problems. Cropping systems adjustment offers an effective approach for the sustainable use of groundwater. However, the assessment of the impacts of future climate change on crop production and water consumption under different cropping systems with/without straw mulching has not been reported in the NCP. In this study, we applied the well validated APSIM model to explore the implementation of five cropping systems (i.e., two maturities per year, 1Y2MS0; three maturities per two year without (with) straw mulching during the fallow period, 2Y3MS0 (2Y3MS1); and one maturity per year without (with) straw mulching during the fallow period, 1Y1MS0 (1Y1MS1)). Statistical downscaled daily climate data based on 33 global climate models (GCMs) were used to drive APSIM to simulate crop phenology, yield and water use under future climate change. We found that cropping system adjustment significantly reduced the amount of water required for irrigation, thereby decreasing groundwater overdraft to a certain extent. Straw mulching could have mitigating effect on groundwater overdraft. Multi-GCMs ensemble means show an increase in temperature, precipitation and solar radiation in the future. Under future climate change scenarios, the phenological date (e.g. flower and maturity dates) of maize and wheat were advanced due to climate warming. Our simulated results indicated that future climate change would have negative impact on maize yield across all cropping systems but have positive impact on wheat yield under most climate change scenarios. Both irrigation and groundwater overdraft reduced in the future due to decreased evapotranspiration and increased precipitation. We concluded that 2Y3MS1 would be the optimum cropping system to balance crop yield and groundwater overdraft. This knowledge can inform the development of improved regional impact assessments of the sustainability of multi-crop rotation systems.

中文翻译:

未来气候变化对华北平原不同种植制度下粮食产量和地下水利用的影响

摘要 华北平原(NCP)的作物生产受到气候变化和水资源短缺的严重影响。该地区用于灌溉的地下水超采已造成严重的生态环境问题。种植系统调整为地下水的可持续利用提供了一种有效的方法。然而,在有/无秸秆覆盖的不同种植系统下,评估未来气候变化对作物生产和耗水量的影响尚未在 NCP 中报告。在这项研究中,我们应用经过充分验证的 APSIM 模型来探索五种作物系统的实施(即,每年两个成熟期,1Y2MS0;在休耕期没有(有)秸秆覆盖的每两年三个成熟期,2Y3MS0 (2Y3MS1);并且在休耕期间没有(有)秸秆覆盖的情况下每年一次成熟,1Y1MS0 (1Y1MS1))。基于 33 个全球气候模型 (GCM) 的统计缩减的每日气候数据用于驱动 APSIM 模拟未来气候变化下的作物物候、产量和用水。我们发现种植制度的调整显着减少了灌溉所需的水量,从而在一定程度上减少了地下水的透支。秸秆覆盖可以减轻地下水透支的影响。多 GCM 集合意味着未来温度、降水和太阳辐射都会增加。在未来气候变化情景下,由于气候变暖,玉米和小麦的物候日期(例如开花和成熟日期)提前。我们的模拟结果表明,未来气候变化将对所有种植系统的玉米产量产生负面影响,但在大多数气候变化情景下对小麦产量产生积极影响。由于蒸发量减少和降水增加,灌溉和地下水透支在未来都会减少。我们得出结论,2Y3MS1 将是平衡作物产量和地下水透支的最佳种植系统。这些知识可以为改进多作物轮作系统可持续性的区域影响评估的发展提供信息。我们得出结论,2Y3MS1 将是平衡作物产量和地下水透支的最佳种植系统。这些知识可以为改进多作物轮作系统可持续性的区域影响评估的发展提供信息。我们得出结论,2Y3MS1 将是平衡作物产量和地下水透支的最佳种植系统。这些知识可以为改进多作物轮作系统可持续性的区域影响评估的发展提供信息。
更新日期:2021-03-01
down
wechat
bug