当前位置: X-MOL 学术Int. J. of Precis. Eng. and Manuf.-Green Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Manufacturing of Compound Parabolic Concentrator Devices Using an Ultra-fine Planing Method for Enhancing Efficiency of a Solar Cell
International Journal of Precision Engineering and Manufacturing-Green Technology ( IF 5.3 ) Pub Date : 2020-12-07 , DOI: 10.1007/s40684-020-00287-3
Hwan-Jin Choi , Changsoon Cho , Sangwon Woo , Jung-Yong Lee , Yeong-Eun Yoo , Minwoo Jeon , Geon-Hee Kim , Tae-Jin Je , Eun-chae Jeon

Various structural patterns are used to control light properties during propagation. In particular, when light is trapped and concentrated onto solar cells, they generate more electricity than without concentration. Since the sun moves continuously, a compound parabolic concentrator (CPC) can enhance the efficiency of solar cells by light-trapping and concentration because a CPC minimizes optical loss by reducing the reflection and the scattering on the surface of solar cells. However, CPC devices are generally expensive to manufacture and are too large in size to be used for applications requiring portability. Here, we developed a novel manufacturing process for a small CPC device and verified the enhanced efficiency of solar cells. Based on ultra-fine planing and injection molding, this process is an efficient method for mass production because it relies on replication. Two metal molds were precisely machined using an ultra-fine planing method with a diamond tool, and a CPC device was accurately manufactured by injection molding at low cost and within one minute. The variation of the specific cutting resistance during machining of the metal molds increased by four times, and the minimum uncut chip thickness decreased from 1.3 to 0.5 μm, which is called a size effect. The finished CPC device exhibited a surface roughness less than 40 nm and showed high optical efficiency in virtue of light-trapping. Finally, the efficiency of a solar cell with the CPC device was enhanced about 10%.



中文翻译:

使用超精细平面方法制造复合抛物面聚光器,以提高太阳能电池的效率

各种结构图案用于控制传播过程中的光属性。特别是,当光被捕获并聚集到太阳能电池上时,它们会比没有聚光时产生更多的电能。由于太阳连续移动,因此复合抛物面聚光器(CPC)可以通过捕光和聚光来提高太阳能电池的效率,因为CPC可以通过减少太阳能电池表面的反射和散射来最大程度地减少光损耗。然而,CPC设备通常制造昂贵并且尺寸太大而不能用于需要便携性的应用中。在这里,我们为小型CPC设备开发了一种新颖的制造工艺,并验证了太阳能电池效率的提高。基于超细刨和注塑成型,由于此过程依赖复制,因此是批量生产的有效方法。使用金刚石工具通过超精细刨削方法对两个金属模具进行精密加工,并在一分钟之内通过注塑成型精确地制造了CPC设备。在金属模具的加工期间,比切削阻力的变化增加了四倍,并且最小未切削切屑厚度从1.3μm减小到0.5μm,这被称为尺寸效应。最终的CPC装置显示出小于40 nm的表面粗糙度,并由于陷光而显示出高光学效率。最后,使用CPC装置的太阳能电池的效率提高了约10%。一分钟内即可通过注塑成型精确制造CPC设备。在金属模具的加工期间,比切削阻力的变化增加了四倍,并且最小未切削切屑厚度从1.3μm减小到0.5μm,这被称为尺寸效应。最终的CPC器件的表面粗糙度小于40 nm,并且由于陷光而显示出高光学效率。最后,使用CPC装置的太阳能电池的效率提高了约10%。一分钟内即可通过注塑成型精确制造CPC设备。在金属模具的加工期间,比切削阻力的变化增加了四倍,并且最小未切削切屑厚度从1.3μm减小到0.5μm,这被称为尺寸效应。最终的CPC装置显示出小于40 nm的表面粗糙度,并由于陷光而显示出高光学效率。最后,使用CPC装置的太阳能电池的效率提高了约10%。最终的CPC器件的表面粗糙度小于40 nm,并且由于陷光而显示出高光学效率。最后,使用CPC装置的太阳能电池的效率提高了约10%。最终的CPC装置显示出小于40 nm的表面粗糙度,并由于陷光而显示出高光学效率。最后,使用CPC装置的太阳能电池的效率提高了约10%。

更新日期:2020-12-07
down
wechat
bug