当前位置: X-MOL 学术Circuit World › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental analysis of UV-activated ethanol sensor based on the formation of organic/inorganic heterojunction
Circuit World ( IF 0.8 ) Pub Date : 2020-12-07 , DOI: 10.1108/cw-05-2020-0082
Radha Sankararajan , Kirubaveni Savarimuthu , Sudha Murugesan , Kiruthika Ramany , Govindaraj Rajamanickam , Santhosh Narendhiran

Purpose

The purpose of this paper is to fabricate an ethanol sensor which has bio-friendly and eco-friendly properties compared to the commercially available ethanol sensors.

Design/methodology/approach

This paper describes the construction of a highly sensitive ethanol sensor with low ppm level detection at room temperature by integrating three techniques. The first deals with the formation of organic/inorganic p-n heterojunction. Second, tuning of structural parameters such as length, diameter and density of Zinc Oxide (ZnO) nanostructure was achieved through introduction of the Fe dopant into a pure ZnO seed layer. Furthermore, ultra-violet (UV) light photoactivation approach was used for enhancing the sensing performance of the fabricated sensors. Four different sensors were fabricated by combing the above approaches. The structural, morphological, optical and material compositions were characterized using different characterization techniques. Sensing behavior of the fabricated sensors toward ethanol was experimented at room temperature with and without UV illumination combined with stability studies. It was observed that all the fabricated sensors showed enhanced sensing performance for 10 ppm of ethanol. In specific, FNZ (Fe-doped ZnO seeded Ni-doped Zn nanorods) sensor exhibited a higher response at 2.2 and 13.5 s for 5 ppm and 100 ppm of ethanol with UV light illumination at room temperature, respectively. The photoactivated FNZ sensor showed quick response and speedy recovery at 18 and 30 s, respectively, for 100 ppm ethanol.

Findings

In this study, the authors have experimentally analyzed the effect of Fe (in ZnO seed layer and ZnO NRs) and Ni (in ZnO NRs) dopants in the room temperature sensing performance (with and without UV light) of the fabricated ethanol sensors. Important sensing parameters like sensitivity, recovery and response time of all the fabricated sensors are reported.

Originality/value

The Fe doped ZnO seeded Ni doped Zn nanorods (FNZ sample) showed a higher response at 2.2 s and 13.5 s for very low 5 ppm and 10 ppm of ethanol at room temperature under UV light illumination when compared to the other fabricated sensors in this paper. Similarly, this sensor also had quick response (18 s) and speedy recovery (30 s) for 100 ppm ethanol.



中文翻译:

基于有机/无机异质结形成的紫外激活乙醇传感器实验分析

目的

本文的目的是制造一种乙醇传感器,与市售的乙醇传感器相比,它具有生物友好和生态友好的特性。

设计/方法/方法

本文描述了通过集成三种技术构建了一种在室温下具有低 ppm 水平检测的高灵敏度乙醇传感器。第一个处理有机/无机p的形成-n 异质结。其次,通过将 Fe 掺杂剂引入纯 ZnO 种子层中,实现了氧化锌 (ZnO) 纳米结构的长度、直径和密度等结构参数的调整。此外,紫外线(UV)光活化方法用于提高制造的传感器的传感性能。通过结合上述方法制造了四种不同的传感器。使用不同的表征技术表征结构、形态、光学和材料成分。在室温下使用和不使用紫外线照射结合稳定性研究,对制造的传感器对乙醇的传感行为进行了实验。观察到所有制造的传感器对 10 ppm 的乙醇都显示出增强的传感性能。具体来说,FNZ(Fe 掺杂的 ZnO 种子的 Ni 掺杂的 Zn 纳米棒)传感器在室温下紫外光照射下对 5 ppm 和 100 ppm 乙醇分别在 2.2 和 13.5 秒表现出更高的响应。对于 100 ppm 乙醇,光活化 FNZ 传感器分别在 18 和 30 秒显示出快速响应和快速恢复。

发现

在这项研究中,作者通过实验分析了 Fe(在 ZnO 种子层和 ZnO NRs 中)和 Ni(在 ZnO NRs 中)掺杂剂对制造的乙醇传感器的室温传感性能(有和没有紫外线)的影响。报告了所有制造的传感器的重要传感参数,如灵敏度、恢复和响应时间。

原创性/价值

与本文中其他制造的传感器相比,Fe 掺杂的 ZnO 接种的 Ni 掺杂的 Zn 纳米棒(FNZ 样品)在室温下在紫外光照射下对非常低的 5 ppm 和 10 ppm 乙醇在 2.2 s 和 13.5 s 时表现出更高的响应. 同样,该传感器对 100 ppm 乙醇也具有快速响应(18 秒)和快速恢复(30 秒)。

更新日期:2020-12-07
down
wechat
bug