当前位置: X-MOL 学术 › Wuhan Univ. J. of Nat. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ion transport mechanism in ClC-type channel protein under complex electrostatic potential
Wuhan University Journal of Natural Sciences Pub Date : 2016-11-11 , DOI: 10.1007/s11859-016-1198-x
Tao Yu , Xu Guo , Xuan Ke , Jianping Sang

In order to illustrate the ion transport mechanism of chloride channel (ClC) protein, a type of ClC protein, ClC-ec1, from Escherichia coli is embedded into an explicit membranewater system by using software VMD. Then a parallel molecular dynamics (MD) simulation is employed to equilibrate the ClC-ec1 structure for 27.5 ns at temperature 298.15 K. Based on this equilibrated structure, we compute the channel geometric size variation and electrostatic potential distribution along the channel. Meanwhile, Cl- transport process is simulated using oriented random walk method under variable external potential. The simulation result shows that Cl- transport velocity depends on the width of the narrowest channel region. Mutation of negative glutamate E148 can produce positive potential, which is beneficial for Cl- transport, around external Cl- binding region in the channel. The simulated current-voltage curves about Cl- transporting in ClC-ec1 protein agree with Jayaram’s experimental results.

中文翻译:

复杂静电势下ClC型通道蛋白的离子迁移机理

为了说明氯离子通道蛋白(ClC)的离子迁移机理,使用VMD软件将一种来自大肠杆菌的ClC蛋白ClC-ec1嵌入到明确的膜水系统中。然后采用平行分子动力学(MD)模拟在298.15 K的温度下平衡ClC-ec1结构27.5 ns。基于此平衡结构,我们计算出通道的几何尺寸变化和沿通道的静电势分布。同时,氯-运输过程中使用下可变外势导向的随机游走方法模拟。仿真结果表明,氯-传输速度取决于最窄通道区域的宽度。负谷氨酸E148的突变可以产生正的电位,这是有益的氯-运输,围绕外部氯-在通道结合区。关于氯的模拟电流-电压曲线-在CLC-EC1蛋白质运送同意贾亚拉姆的实验结果。
更新日期:2016-11-11
down
wechat
bug