当前位置: X-MOL 学术J. Eng. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Derivation of an effective dispersion model for electro-osmotic flow involving free boundaries in a thin strip
Journal of Engineering Mathematics ( IF 1.4 ) Pub Date : 2019-11-18 , DOI: 10.1007/s10665-019-10024-8
Nadja Ray , Raphael Schulz

Since dispersion is one of the key parameters in solute transport, its accurate modeling is essential to avoid wrong predictions of flow and transport behavior. In this research, we derive new effective dispersion models which are valid also in evolving geometries. To this end, we consider reactive ion transport under dominate flow conditions (i.e. for high Peclet number) in a thin, potentially evolving strip. Electric charges and the induced electric potential (the zeta potential) give rise to electro-osmotic flow in addition to pressure-driven flow. At the pore-scale a mathematical model in terms of coupled partial differential equations is introduced. If applicable, the free boundary, i.e. the interface between an attached layer of immobile chemical species and the fluid is taken into account via the thickness of the layer. To this model, a formal limiting procedure is applied and the resulting upscaled models are investigated for dispersive effects. In doing so, we emphasize the cross-coupling effects of hydrodynamic dispersion (Taylor–Aris dispersion) and dispersion created by electro-osmotic flow. Moreover, we study the limit of small and large Debye length. Our results improve the understanding of fundamentals of flow and transport processes, since we can now explicitly calculate the dispersion coefficient even in evolving geometries. Further research may certainly address the situation of clogging by means of numerical studies. Finally, improved predictions of breakthrough curves as well as facilitated modeling of mixing and separation processes are possible.

中文翻译:

薄带自由边界电渗流有效弥散模型的推导

由于分散是溶质运移的关键参数之一,其精确建模对于避免对流动和运移行为的错误预测至关重要。在这项研究中,我们推导出新的有效色散模型,这些模型也适用于不断发展的几何形状。为此,我们考虑在主要流动条件(即高 Peclet 数)下在薄的、可能演化的条带中的反应离子传输。除了压力驱动的流动之外,电荷和感应电势(zeta 电位)还会引起电渗流。在孔隙尺度上,引入了耦合偏微分方程的数学模型。如果适用,自由边界,即固定化学物质的附着层和流体之间的界面通过层的厚度被考虑在内。对于这个模型,应用正式的限制程序,并研究由此产生的放大模型的色散效应。在这样做时,我们强调了流体动力分散(Taylor-Aris 分散)和电渗流产生的分散的交叉耦合效应。此外,我们研究了小德拜长度和大德拜长度的限制。我们的结果提高了对流动和运输过程基本原理的理解,因为我们现在甚至可以在不断变化的几何形状中明确计算色散系数。进一步的研究肯定可以通过数值研究来解决堵塞的情况。最后,可以改进对穿透曲线的预测以及简化混合和分离过程的建模。我们强调流体动力分散(Taylor-Aris 分散)和电渗流产生的分散的交叉耦合效应。此外,我们研究了小德拜长度和大德拜长度的限制。我们的结果提高了对流动和运输过程基本原理的理解,因为我们现在甚至可以在不断变化的几何形状中明确计算色散系数。进一步的研究肯定可以通过数值研究来解决堵塞的情况。最后,可以改进对穿透曲线的预测以及简化混合和分离过程的建模。我们强调流体动力分散(Taylor-Aris 分散)和电渗流产生的分散的交叉耦合效应。此外,我们研究了小德拜长度和大德拜长度的限制。我们的结果提高了对流动和运输过程基本原理的理解,因为我们现在甚至可以在不断变化的几何形状中明确计算色散系数。进一步的研究肯定可以通过数值研究来解决堵塞的情况。最后,可以改进对穿透曲线的预测以及简化混合和分离过程的建模。我们的结果提高了对流动和运输过程基本原理的理解,因为我们现在甚至可以在不断变化的几何形状中明确计算色散系数。进一步的研究肯定可以通过数值研究来解决堵塞的情况。最后,可以改进对穿透曲线的预测以及简化混合和分离过程的建模。我们的结果提高了对流动和运输过程基本原理的理解,因为我们现在甚至可以在不断变化的几何形状中明确计算色散系数。进一步的研究肯定可以通过数值研究来解决堵塞的情况。最后,可以改进对穿透曲线的预测以及简化混合和分离过程的建模。
更新日期:2019-11-18
down
wechat
bug