当前位置: X-MOL 学术Discret. Comput. Geom. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chiral Astral Realizations of Cyclic 3-Configurations
Discrete & Computational Geometry ( IF 0.6 ) Pub Date : 2020-04-27 , DOI: 10.1007/s00454-020-00203-1
Leah Wrenn Berman , Philip DeOrsey , Jill R. Faudree , Tomaž Pisanski , Arjana Žitnik

A cyclic $$(n_{3})$$ ( n 3 ) configuration is a combinatorial configuration whose automorphism group contains a cyclic permutation of the points of the configuration; that is, the points of the configuration may be considered to be elements of $${\mathbb {Z}}_{n}$$ Z n , and the lines of the configuration as cyclic shifts of a single fixed starting block [0, a , b ], where $$a, b \in {\mathbb {Z}}_{n}$$ a , b ∈ Z n . We denote such configurations as $$\mathrm{Cyc}_{n}(0,a,b)$$ Cyc n ( 0 , a , b ) . One of the fundamental questions in the study of configurations is that of geometric realizability . In the case where $$n = 2m$$ n = 2 m , it is combinatorially possible to divide the points and lines of the configuration into two classes according to parity, so it is natural to ask whether the configuration can be realized using those classes. We provide methods for producing geometric realizations of configurations $$\mathrm{Cyc}_{2m}(0,a,b)$$ Cyc 2 m ( 0 , a , b ) that have two symmetry classes under the maximal rotational subgroup of the geometric symmetry group (that is, chiral astral realizations), and we provide a number of constraints on a and b that guarantee such a realization exists. Experiments on up to 500 points suggest that, with the exception of some small sporadic examples and a single infinite family $$\mathrm{Cyc}_{2(k+1)}(0,1,k)$$ Cyc 2 ( k + 1 ) ( 0 , 1 , k ) , $$k \ge 3$$ k ≥ 3 and k odd, all cyclic $$(2m_{3})$$ ( 2 m 3 ) configurations are realizable as geometric chiral astral configurations using the methods described in this paper.

中文翻译:

循环 3 构型的手性星体实现

循环 $$(n_{3})$$ ( n 3 ) 配置是组合配置,其自同构群包含配置的点的循环置换;也就是说,配置的点可以被认为是 $${\mathbb {Z}}_{n}$$ Z n 的元素,并且配置的线作为单个固定起始块 [0 , a , b ], 其中 $$a, b \in {\mathbb {Z}}_{n}$$ a , b ∈ Z n 。我们将此类配置表示为 $$\mathrm{Cyc}_{n}(0,a,b)$$ Cyc n ( 0 , a , b ) 。配置研究的基本问题之一是几何可实现性。在 $$n = 2m$$ n = 2 m 的情况下,组合上可以根据奇偶性将构型的点和线分为两类,所以很自然地会问是否可以使用那些来实现构型类。我们提供了产生配置的几何实现的方法 $$\mathrm{Cyc}_{2m}(0,a,b)$$ Cyc 2 m ( 0 , a , b ) 在最大旋转子群下有两个对称类几何对称群(即手性星体实现),我们提供了一些对 a 和 b 的约束,以保证这种实现存在。多达 500 个点的实验表明,除了一些小的零星例子和单个无限族 $$\mathrm{Cyc}_{2(k+1)}(0,1,k)$$ Cyc 2 ( k + 1 ) ( 0 , 1 , k ) , $$k \ge 3$$ k ≥ 3 和 k 奇数,所有循环 $$(2m_{3})$$ ( 2 m 3 ) 配置都可以实现为几何手性使用本文中描述的方法进行星体配置。b ) 在几何对称群的最大旋转子群下有两个对称类(即手性星体实现),我们对 a 和 b 提供了许多约束,以保证这种实现存在。多达 500 个点的实验表明,除了一些小的零星例子和单个无限族 $$\mathrm{Cyc}_{2(k+1)}(0,1,k)$$ Cyc 2 ( k + 1 ) ( 0 , 1 , k ) , $$k \ge 3$$ k ≥ 3 和 k 奇数,所有循环 $$(2m_{3})$$ ( 2 m 3 ) 配置都可以实现为几何手性使用本文中描述的方法进行星体配置。b ) 在几何对称群的最大旋转子群下有两个对称类(即手性星体实现),我们对 a 和 b 提供了许多约束,以保证这种实现存在。多达 500 个点的实验表明,除了一些小的零星例子和单个无限族 $$\mathrm{Cyc}_{2(k+1)}(0,1,k)$$ Cyc 2 ( k + 1 ) ( 0 , 1 , k ) , $$k \ge 3$$ k ≥ 3 和 k 奇数,所有循环 $$(2m_{3})$$ ( 2 m 3 ) 配置都可以实现为几何手性使用本文中描述的方法进行星体配置。
更新日期:2020-04-27
down
wechat
bug