当前位置: X-MOL 学术Funct. Mater. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing hollowed carbon@Si cubic nanobox@reduced graphene oxide nanostructures for lithium-ion battery with high capacity and long cyclic stability
Functional Materials Letters ( IF 1.2 ) Pub Date : 2020-10-28 , DOI: 10.1142/s1793604720500423
Zehao Zhang 1 , Haibo Li 1
Affiliation  

In this work, we synthesized the hollowed carbon@Si cubic nanobox sandwiched by reduced graphene oxide (HC@Si@rGO) using the template-sacrificial method for lithium-ions batteries’ (LIBs’) anode with high specific capacity and ultra-stable long cyclic performance. During the preparation, the ZIF-8 was initially etched by Si(OH)4 to generate the hollowed ZIF-8 and instantaneously in-situ formation of SiO2 coatings on ZIF-8, resulting in synthesis of ZIF-8@SiO2. Afterwards, the ZIF-8@SiO2 was reduced to HC@Si by the magnesium thermal treatment while the NaCl was employed as a heat-removing agent. Successfully, the rGO was introduced coupling with HC@Si to obtain HC@Si@rGO. As anode for LIBs, it delivers high initial discharge capacity of 3712.9 mAh g[Formula: see text] at the current density of 0.1 A g[Formula: see text]. After 130 cycles, a stable specific capacity of 1311.0 mAh g[Formula: see text] is achieved. The long charge/discharge performance of HC@Si@rGO anode is demonstrated at 0.5 A g[Formula: see text], exhibiting the specific capacity of 595.4 mAh g[Formula: see text] after 500 cycles. Based on the electrochemical analysis, these remarkable performances are attributed to the unique nanostructure of HC@Si@rGO. Essentially, the inner-layered HC acts as a buffer matrix to reinforce the mechanical strength of the entire electrode and restrain the volume change of Si during the charge/discharge. On the other hand, the evenly distributed HC@Si is fixed within the flexible rGO sheets to form the network structure, which not only promises a good conductive connection between HC@Si but also prevents the continuous formation of solid electrolyte interface film.

中文翻译:

为具有高容量和长循环稳定性的锂离子电池设计中空碳@Si立方纳米盒@还原氧化石墨烯纳米结构

在这项工作中,我们使用模板牺牲法合成了夹在还原氧化石墨烯(HC@Si@rGO)中的空心碳@Si立方纳米盒,用于具有高比容量和超稳定的锂离子电池(LIBs)负极。长循环性能。在制备过程中,ZIF-8 最初由 Si(OH)4生成中空的 ZIF-8 并瞬间原位形成 SiO2ZIF-8 上的涂层,导致 ZIF-8@SiO 的合成2. 随后,ZIF-8@SiO2通过镁热处理将其还原为HC@Si,而NaCl用作除热剂。成功地引入了rGO与HC@Si耦合以获得HC@Si@rGO。作为 LIB 的负极,它在 0.1 A g[公式:见文本]的电流密度下提供 3712.9 mAh g[公式:见文本]的高初始放电容量。130次循环后,达到1311.0 mAh g[公式:见正文]的稳定比容量。HC@Si@rGO负极的长充放电性能在0.5 A g[公式:见正文]下得到证明,500次循环后的比容量为595.4 mAh g[公式:见正文]。基于电化学分析,这些卓越的性能归因于 HC@Si@rGO 独特的纳米结构。本质上,内层HC作为缓冲基质,增强整个电极的机械强度,抑制充放电过程中Si的体积变化。另一方面,均匀分布的HC@Si被固定在柔性rGO片内形成网络结构,不仅保证了HC@Si之间良好的导电连接,而且阻止了固体电解质界面膜的连续形成。
更新日期:2020-10-28
down
wechat
bug