当前位置: X-MOL 学术Soft Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D Printed Biomimetic Soft Robot with Multimodal Locomotion and Multifunctionality
Soft Robotics ( IF 7.9 ) Pub Date : 2022-02-14 , DOI: 10.1089/soro.2020.0004
Erina Baynojir Joyee 1 , Adam Szmelter 2 , David Eddington 2 , Yayue Pan 1
Affiliation  

Soft robots can outperform traditional rigid robots in terms of structural compliance, enhanced safety, and efficient locomotion. However, it is still a grand challenge to design and efficiently manufacture soft robots with multimodal locomotion capability together with multifunctionality for navigating in dynamic environments and meanwhile performing diverse tasks in real-life applications. This study presents a 3D-printed soft robot, which has spatially varied material compositions (0–50% particle–polymer weight ratio), multiscale hierarchical surface structures (10 nm, 1 μm, and 70 μm features on 5 mm wide robot footpads), and consists of functional components for multifunctionality. A novel additive manufacturing process, magnetic-field-assisted projection stereolithography (M-SL), is innovated to fabricate the proposed robot with prescribed material heterogeneity and structural hierarchy, and hence locally engineered flexibility and preprogrammed functionality. The robot incorporates untethered magnetic actuation with superior multimodal locomotion capabilities for completing tasks in harsh environments, including effective load carrying (up to ∼30 times of its own weight) and obstacle removing (up to 6.5 times of its own weight) in congested spaces (e.g., 5 mm diameter glass tube, gastric folds of a pig stomach) by gripping or pushing objects (e.g., 0.3–8 times of its own weight with a velocity up to 31 mm/s). Furthermore, the robot footpads are covered by multiscale hierarchical spike structures with features spanning from nanometers (e.g., 10 nm) to millimeters. Such high structural hierarchy enables multiple superior functions, including changing a naturally hydrophilic surface to hydrophobic, hairy adhesion, and excellent cell attaching and growth properties. It is found that the hairy adhesion and the engineered hydrophobicity of the robot footpad enable robust navigation in wet and slippery environments. The multimaterial multiscale robot design and the direct digital manufacturing method enable complex and versatile robot behaviors in sophisticated environments, facilitating a wide spectrum of real-life applications.

中文翻译:

具有多模式运动和多功能性的 3D 打印仿生软机器人

软机器人在结构顺应性、增强安全性和高效运动方面可以胜过传统的刚性机器人。然而,设计和高效制造具有多模式运动能力和多功能的软机器人仍然是一个巨大的挑战,以便在动态环境中导航,同时在现实生活中执行各种任务。本研究展示了一个 3D 打印的软机器人,它具有空间变化的材料成分(0-50% 颗粒-聚合物重量比)、多尺度分层表面结构(5 mm 宽机器人脚垫上的 10 nm、1 μm 和 70 μm 特征) , 并由多功能的功能组件组成。一种新的增材制造工艺,磁场辅助投影立体光刻 (M-SL),创新以制造具有规定材料异质性和结构层次结构的拟议机器人,因此具有局部工程灵活性和预编程功能。该机器人结合了不受束缚的磁驱动和卓越的多模式运动能力,可在恶劣环境中完成任务,包括在拥挤的空间中有效承载(高达自身重量的 30 倍)和障碍物移除(高达自身重量的 6.5 倍)。例如,5 毫米直径的玻璃管,猪胃的胃皱襞)通过抓握或推动物体(例如,以自身重量的 0.3-8 倍的速度,以高达 31 毫米/秒的速度)。此外,机器人脚垫被多尺度分层尖峰结构覆盖,其特征范围从纳米(例如,10 nm)到毫米。如此高的结构层次可实现多种卓越的功能,包括将天然亲水表面变为疏水、毛状粘附以及出色的细胞附着和生长特性。研究发现,机器人脚垫的毛茸茸附着力和工程疏水性能够在潮湿和湿滑的环境中实现稳健的导航。多材料多尺度机器人设计和直接数字制造方法可在复杂环境中实现复杂且多功能的机器人行为,从而促进广泛的现实生活应用。研究发现,机器人脚垫的毛茸茸附着力和工程疏水性能够在潮湿和湿滑的环境中实现稳健的导航。多材料多尺度机器人设计和直接数字制造方法可在复杂环境中实现复杂且多功能的机器人行为,从而促进广泛的现实生活应用。研究发现,机器人脚垫的毛茸茸附着力和工程疏水性能够在潮湿和湿滑的环境中实现稳健的导航。多材料多尺度机器人设计和直接数字制造方法可在复杂环境中实现复杂且多功能的机器人行为,从而促进广泛的现实生活应用。
更新日期:2022-02-14
down
wechat
bug