当前位置: X-MOL 学术Plant Cell Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world
Plant, Cell & Environment ( IF 7.3 ) Pub Date : 2020-12-05 , DOI: 10.1111/pce.13970
Walid Sadok 1 , Jose R Lopez 1 , Kevin P Smith 1
Affiliation  

The frequency and intensity of high-temperature stress events are expected to increase as climate change intensifies. Concomitantly, an increase in evaporative demand, driven in part by global warming, is also taking place worldwide. Despite this, studies examining high-temperature stress impacts on plant productivity seldom consider this interaction to identify traits enhancing yield resilience towards climate change. Further, new evidence documents substantial increases in plant transpiration rate in response to high-temperature stress even under arid environments, which raise a trade-off between the need for latent cooling dictated by excessive temperatures and the need for water conservation dictated by increasing evaporative demand. However, the mechanisms behind those responses, and the potential to design the next generation of crops successfully navigating this trade-off, remain poorly investigated. Here, we review potential mechanisms underlying reported increases in transpiration rate under high-temperature stress, within the broader context of their impact on water conservation needed for crop drought tolerance. We outline three main contributors to this phenomenon, namely stomatal, cuticular and water viscosity-based mechanisms, and we outline research directions aiming at designing new varieties optimized for specific temperature and evaporative demand regimes to enhance crop productivity under a warmer and dryer climate.

中文翻译:

高温胁迫下蒸腾作用增加:气候变暖世界作物恢复力的潜在机制、权衡和前景

随着气候变化的加剧,高温胁迫事件的频率和强度预计会增加。与此同时,部分由全球变暖驱动的蒸发需求也在世界范围内增加。尽管如此,研究高温胁迫对植物生产力影响的研究很少考虑这种相互作用来确定提高产量对气候变化的适应能力的性状。此外,新的证据表明,即使在干旱环境下,植物蒸腾速率也会因高温胁迫而显着增加,这在由过高温度决定的潜在冷却需求与由增加蒸发需求决定的节水需求之间进行权衡. 然而,这些反应背后的机制,以及设计下一代作物成功驾驭这种权衡的潜力,仍然缺乏研究。在这里,我们回顾了在高温胁迫下蒸腾速率增加的潜在机制,在它们对作物耐旱所需的节水的影响的更广泛背景下。我们概述了造成这种现象的三个主要因素,即基于气孔、表皮和水粘度的机制,并概述了旨在设计针对特定温度和蒸发需求状况优化的新品种的研究方向,以在更温暖和干燥的气候下提高作物生产力。在更广泛的背景下,它们对作物耐旱所需的水资源产生影响。我们概述了造成这种现象的三个主要因素,即基于气孔、表皮和水粘度的机制,并概述了旨在设计针对特定温度和蒸发需求状况优化的新品种的研究方向,以在更温暖和干燥的气候下提高作物生产力。在更广泛的背景下,它们对作物耐旱所需的水资源产生影响。我们概述了造成这种现象的三个主要因素,即基于气孔、表皮和水粘度的机制,并概述了旨在设计针对特定温度和蒸发需求状况优化的新品种的研究方向,以在更温暖和干燥的气候下提高作物生产力。
更新日期:2020-12-05
down
wechat
bug