当前位置: X-MOL 学术Angew. Chem. Int. Ed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
1,3,4‐Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-12-04 , DOI: 10.1002/anie.202014207
Jinchao Ma 1, 2, 3 , Ajay Kumar Chinnam 2 , Guangbin Cheng 1 , Hongwei Yang 1 , Jiaheng Zhang 4 , Jean'ne M. Shreeve 2
Affiliation  

Many energetic materials synthesized to date have limited applications because of low thermal and/or mechanical stability. This limitation can be overcome by introducing structural modifications such as a bridging group. In this study, a series of 1,3,4‐oxadiazole‐bridged furazans was prepared. Their structures were confirmed by 1H and 13C NMR, infrared, elemental, and X‐ray crystallographic analyses. The thermal stability, friction sensitivity, impact sensitivity, detonation velocity, and detonation pressure were evaluated. The hydroxylammonium salt 8 has an excellent detonation performance (D=9101 m s−1, P=37.9 GPa) and insensitive properties (IS=17.4 J, FS=330 N), which show its great potential as a high‐performance insensitive explosive. Using quantum computation and crystal structure analysis, the effect of the introduction of the 1,3,4‐oxadiazole moiety on molecular reactivity and the difference between the sensitivities and thermal stabilities of mono‐ and bis‐1,3,4‐oxadiazole bridges are considered. The synthetic method for introducing 1,3,4‐oxadiazole and the systematic study of 1,3,4‐oxadiazole‐bridged compounds provide a theoretical basis for future energetics design.

中文翻译:

1,3,4-Oxadiazole桥:在分子水平上改善能量学的策略

由于低的热和/或机械稳定性,迄今为止合成的许多高能材料具有有限的应用。可以通过引入结构修饰(例如桥接基团)来克服此限制。在本研究中,制备了一系列1,3,4-恶二唑桥连的呋喃唑。通过1 H和13 C NMR,红外,元素和X射线晶体学分析确认了它们的结构。评价了热稳定性,摩擦敏感性,冲击敏感性,爆炸速度和爆炸压力。羟铵盐8具有优异的爆震性能(D= 9101m s -1P= 37.9 GPa)和不敏感的特性(IS = 17.4 J,FS = 330 N),显示出其作为高性能不敏感炸药的巨大潜力。使用量子计算和晶体结构分析,引入1,3,4-恶二唑部分对分子反应性以及单和双1,3,4-恶二唑桥的敏感性和热稳定性之间的差异是经过考虑的。引入1,3,4-恶二唑的合成方法以及对1,3,4-恶二唑桥联化合物的系统研究为未来的高能学设计提供了理论依据。
更新日期:2020-12-04
down
wechat
bug