当前位置: X-MOL 学术IEEE Microw. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cryogenic CMOS Circuits and Systems: Challenges and Opportunities in Designing the Electronic Interface for Quantum Processors
IEEE Microwave Magazine ( IF 3.7 ) Pub Date : 2021-01-01 , DOI: 10.1109/mmm.2020.3023271
Edoardo Charbon , Masoud Babaie , Andrei Vladimirescu , Fabio Sebastiano

Quantum computing could potentially offer faster solutions for some of today's classically intractable problems using quantum processors as computational support for quantum algorithms [1]. Quantum processors, in the most frequent embodiment, comprise an array of quantum bits (qubits), the fundamental computational unit of a quantum computer. Unlike conventional bits, qubits can take a coherent state ranging from |0> to |1> on a continuous sphere, known as the Bloch sphere (Figure 1). When the state of the qubit, represented by a vector on the Bloch sphere, is on the equator of such a sphere, qubits are said to be in maximum superposition. Entanglement is the second important quantum mechanical property of qubit states, where knowing the state of one qubit implies knowing the state of the other one as well.

中文翻译:

低温 CMOS 电路和系统:设计量子处理器电子接口的挑战和机遇

使用量子处理器作为量子算法的计算支持,量子计算可能会为当今一些经典的棘手问题提供更快的解决方案 [1]。在最常见的实施例中,量子处理器包括一组量子位 (qubit),这是量子计算机的基本计算单元。与传统位不同,量子位可以在连续球体(称为布洛赫球体)上呈现从 |0> 到 |1> 的相干状态(图 1)。当由布洛赫球体上的向量表示的量子位的状态位于该球体的赤道上时,称量子位处于最大叠加状态。纠缠是量子比特状态的第二个重要量子力学特性,其中知道一个量子比特的状态意味着也知道另一个量子比特的状态。
更新日期:2021-01-01
down
wechat
bug