当前位置: X-MOL 学术J. Vac. Sci. Technol. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic force microscopy for nanoscale mechanical property characterization
Journal of Vacuum Science & Technology B ( IF 1.5 ) Pub Date : 2020-11-01 , DOI: 10.1116/6.0000544
Gheorghe Stan 1 , Sean W. King 2
Affiliation  

Over the past several decades, atomic force microscopy (AFM) has advanced from a technique used primarily for surface topography imaging to one capable of characterizing a range of chemical, mechanical, electrical, and magnetic material properties with subnanometer resolution. In this review, we focus on AFM as a nanoscale mechanical property characterization tool and examine various AFM contact and intermittent contact modes that add mechanical contrast to an imaged surface. Through detailed analysis of the tip-sample contact mechanics, this contrast can be converted into quantitative measurements of various nanomechanical properties including elastic modulus, shear modulus, wear rate, adhesion, and viscoelasticity. Different AFM modes that provide such measurements are compared and contrasted in this work on a wide range of materials including ceramics, metals, semiconductors, polymers, and biomaterials. In the last few years, considerable improvements have been made in terms of fast imaging capabilities, tip preservation, and quantitative mechanics for multifrequency measurements as well as well-known AFM modes like amplitude modulation and peak-force tapping. In line with these developments, a major highlight of this review is the discussion of the operation and capabilities of one such mode, namely, intermittent contact resonance AFM (ICR-AFM). The applications of ICR-AFM to nanoscale surface and subsurface quantitative mechanical characterizations are reviewed with specific examples provided for thin polymeric films and patterned nanostructures of organosilicate dielectric materials. The combination of AFM-based mechanical characterization with AFM-based chemical spectroscopy to allow nanoscale structure-property characterization is also discussed and demonstrated for the analysis of low-k dielectric/copper nanoelectronic interconnect structures and further highlights synergistic advances in the AFM field.

中文翻译:

用于纳米级机械性能表征的原子力显微镜

在过去的几十年里,原子力显微镜 (AFM) 已经从一种主要用于表面形貌成像的技术发展为一种能够以亚纳米分辨率表征一系列化学、机械、电气和磁性材料特性的技术。在这篇综述中,我们将 AFM 作为一种纳米级机械性能表征工具,并研究了各种 AFM 接触和间歇接触模式,这些模式为成像表面增加了机械对比度。通过对尖端-样品接触力学的详细分析,这种对比可以转化为各种纳米力学性能的定量测量,包括弹性模量、剪切模量、磨损率、附着力和粘弹性。在这项工作中,对提供此类测量的不同 AFM 模式进行了比较和对比,这些材料包括陶瓷、金属、半导体、聚合物和生物材料。在过去几年中,在快速成像能力、尖端保存和多频测量的定量力学以及众所周知的 AFM 模式(如调幅和峰值力敲击)方面取得了相当大的改进。与这些发展相一致,本次审查的一个主要亮点是对一种此类模式的操作和能力的讨论,即间歇接触共振 AFM (ICR-AFM)。综述了 ICR-AFM 在纳米级表面和次表面定量机械表征中的应用,并通过为薄聚合物薄膜和有机硅酸盐介电材料的图案化纳米结构提供的具体例子进行了回顾。还讨论并展示了基于 AFM 的机械表征与基于 AFM 的化学光谱学相结合的纳米级结构特性表征,用于分析低 k 介电/铜纳米电子互连结构,并进一步突出了 AFM 领域的协同进步。
更新日期:2020-11-01
down
wechat
bug