当前位置: X-MOL 学术Int. J. Multiphase Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coriolis-induced liquid breakup and spray evolution in a rotary slinger atomizer: Experiments and Analysis
International Journal of Multiphase Flow ( IF 3.6 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.ijmultiphaseflow.2020.103532
Srikrishna Sahu , Arnab Chakraborty , Dalton Maurya

Abstract Understanding the physics of primary liquid breakup process and its correlation with the evolution of spray characteristics in a rotary slinger atomizer is the goal of the present research. Experiments were conducted in a high-speed slinger test rig that houses a static liquid delivery manifold to uniformly supply the liquid to the rotating slinger disc that contains a single row of orifices carved on its peripheral surface for liquid injection.The atomizer was operated for a wide range of conditions by varying the rotational speed and liquid feed rate. The liquid breakup structure at the exit of the slinger orifices was visualized using front light illumination technique, while the droplet size was measured at different radial stations away from the slinger surface by application of the Interferometric Laser Imaging for Droplet Sizing (ILIDS) technique. The visualization images highlighted strong influence of Coriolis force as the liquid tends to accumulate on one side of the channel (that is opposite to the rotational direction) for all cases. It was observed that while the liquid thickness is smaller for higher rotational speed, it does not vary much with liquid feed rate at the same speed and, instead, in such case the span of the liquid is wider. A theoretical analysis was developed to describe the in-channel liquid behaviour that accounts for the effect of Coriolis and surface tension forces. Interestingly, the theory could explain the above observations. The differences in the predictions in comparison to the analysis by Dahm et al. (2006a) was attributed to the assumption of annular film flow in the latter. The liquid breakup mode (stream, sheet or transition mode) could be described by Coriolis Bond number ( B o ) that refers to the ratio of Coriolis to surface tension forces and proportional to the spread parameter (span to thickness ratio), while the liquid breakup regimes were identified on a B o − q plot, where q is the liquid to air momentum flux ratio. The variation of characteristic droplet sizes with both rotational speed and feed rate were examined, and again some interesting trends are identified. The correlation between liquid breakup mode/regime with the measured droplet size was established using the above non-dimensional numbers.

中文翻译:

旋转抛油环雾化器中科里奥利引起的液体破裂和喷雾演变:实验与分析

摘要 了解初级液体分解过程的物理特性及其与旋转抛油环雾化器中喷雾特性演变的相关性是本研究的目标。实验是在高速抛油环试验台上进行的,该试验台装有一个静态液体输送歧管,以将液体均匀地供应到旋转抛油环盘,该抛油环盘在其圆周表面上刻有单排用于液体喷射的孔口。通过改变旋转速度和液体进料速度来适应广泛的条件。使用前光照明技术可视化抛油环出口处的液体破碎结构,而液滴尺寸是在远离抛油环表面的不同径向站通过应用激光干涉成像液滴尺寸 (ILIDS) 技术测量的。可视化图像强调了科里奥利力的强烈影响,因为在所有情况下,液体往往会积聚在通道的一侧(与旋转方向相反)。据观察,虽然对于较高的旋转速度液体厚度较小,但在相同速度下它不会随液体进料速率变化很大,相反,在这种情况下,液体的跨度更宽。开发了一种理论分析来描述解释科里奥利和表面张力影响的通道内液体行为。有趣的是,该理论可以解释上述观察结果。与 Dahm 等人的分析相比,预测的差异。(2006a) 归因于后者的环形膜流假设。液体破裂模式(流、片或过渡模式)可以用科里奥利键数 (B o ) 来描述,该数是指科里奥利与表面张力的比值并与扩散参数(跨度与厚度比)成正比,而液体在 B o - q 图上确定了破裂状态,其中 q 是液体与空气的动量通量比。检查了特征液滴尺寸随转速和进料速率的变化,并再次确定了一些有趣的趋势。使用上述无量纲数建立液体破碎模式/机制与测量的液滴尺寸之间的相关性。(2006a) 归因于后者的环形膜流假设。液体破裂模式(流、片或过渡模式)可以用科里奥利键数 (B o ) 来描述,该数是指科里奥利与表面张力的比值并与扩散参数(跨度与厚度比)成正比,而液体在 B o - q 图上确定了破裂状态,其中 q 是液体与空气的动量通量比。检查了特征液滴尺寸随转速和进料速率的变化,并再次确定了一些有趣的趋势。使用上述无量纲数建立液体破碎模式/机制与测量的液滴尺寸之间的相关性。(2006a) 归因于后者的环形膜流假设。液体破裂模式(流、片或过渡模式)可以用科里奥利键数 (B o ) 来描述,该数是指科里奥利与表面张力的比值并与扩散参数(跨度与厚度比)成正比,而液体在 B o - q 图上确定了破裂状态,其中 q 是液体与空气的动量通量比。检查了特征液滴尺寸随转速和进料速率的变化,并再次确定了一些有趣的趋势。使用上述无量纲数建立液体破碎模式/机制与测量的液滴尺寸之间的相关性。片或过渡模式)可以用科里奥利键数 (B o ) 来描述,它指的是科里奥利与表面张力的比值并与铺展参数(跨度与厚度比)成正比,而液体破裂状态在 B 上确定o − q 图,其中 q 是液体与空气的动量通量比。检查了特征液滴尺寸随转速和进料速率的变化,并再次确定了一些有趣的趋势。使用上述无量纲数建立液体破碎模式/机制与测量的液滴尺寸之间的相关性。片或过渡模式)可以用科里奥利键数 (B o ) 来描述,它指的是科里奥利与表面张力的比值并与铺展参数(跨度与厚度比)成正比,而液体破裂状态在 B 上确定o − q 图,其中 q 是液体与空气的动量通量比。检查了特征液滴尺寸随转速和进料速率的变化,并再次确定了一些有趣的趋势。使用上述无量纲数建立液体破碎模式/机制与测量的液滴尺寸之间的相关性。其中 q 是液体与空气的动量通量比。检查了特征液滴尺寸随转速和进料速率的变化,并再次确定了一些有趣的趋势。使用上述无量纲数建立液体破碎模式/机制与测量的液滴尺寸之间的相关性。其中 q 是液体与空气的动量通量比。检查了特征液滴尺寸随转速和进料速率的变化,并再次确定了一些有趣的趋势。使用上述无量纲数建立液体破碎模式/机制与测量的液滴尺寸之间的相关性。
更新日期:2021-02-01
down
wechat
bug