当前位置: X-MOL 学术Chemosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rational design of hetero-dimensional C-ZnO/MoS2 nanocomposite anchored on 3D mesoporous carbon framework towards synergistically enhanced stability and efficient visible-light-driven photocatalytic activity
Chemosphere ( IF 8.1 ) Pub Date : 2020-12-03 , DOI: 10.1016/j.chemosphere.2020.129148
Sk Emdadul Islam , Da-Ren Hang , Chun-Hu Chen , Mitch M.C. Chou , Chi-Te Liang , Krishna Hari Sharma

For efficient solar energy harvesting, various engineering strategies to strengthen visible-light responsivity of ZnO photocatalyst is under intensive investigation. In this work, a new ternary C-ZnO/MoS2/mesoporous carbon nanocomposite was successfully prepared by a two-step solution-processed synthesis protocol. The ternary composite exhibits a well-interconnected 3D mesoporous microstructure assembled by carbon nanosheets, which is loaded with quasi 0D ZnO nanoparticles and 2D MoS2 nanosheets. The carbonaceous nanocomposites show enhanced visible-light-driven photocatalytic performance and high photo-corrosion resistance. The incorporation of carbon in the hybrid design has manifold benefits that drastically promotes the photoactivity and photostability. The significant enhancement in photodegradation activity of the hybrid catalysts can be ascribed to a few positive synergistic effects, such as increased surface area and active reaction sites, boosted surface charge utilization efficiency, and band-gap lowering. The high porosity of the distinct microstructure raises the dye adsorption within the material. Tailored interface/surface properties enable more effective mass transport and higher separation efficiency of photo-generated carriers. The modulated electronic structure leads to the narrowing of the ZnO optical bandgap. Meanwhile, coupling with carbon prevents ZnO from photo-corrosion. Our approach highlights the roles of carbon as structure directing and stabilizing agents as well as heteroatom in defect engineering for wide band-gap oxide materials. The rational material design of multivariate mixed-dimensional architecture also provides guiding insight for the advancement of heterogeneous photocatalyst materials with superior performance and durability. The presented engineering strategy would be a promising method for the preparation of nanomaterials supported on 3D carbon network with high porosity and visible-light-driven photocatalytic performance.



中文翻译:

合理设计3D介孔碳骨架上锚固的杂维C-ZnO / MoS 2纳米复合材料,以协同增强稳定性和有效的可见光驱动的光催化活性

为了有效地收集太阳能,正在深入研究各种增强ZnO光催化剂可见光响应性的工程策略。在这项工作中,通过两步溶液处理的合成方案成功地制备了新的三元C-ZnO / MoS 2 /介孔碳纳米复合材料。三元复合材料表现出由碳纳米片组装的良好互连的3D介孔微观结构,其中装载了准0D ZnO纳米颗粒和2D MoS 2纳米片。含碳纳米复合材料显示出增强的可见光驱动的光催化性能和较高的耐光腐蚀性能。在混合设计中掺入碳具有多种好处,可以极大地提高光活性和光稳定性。杂化催化剂光降解活性的显着提高可归因于一些积极的协同效应,例如增加的表面积和活性反应位点,提高的表面电荷利用效率和带隙降低。独特的微结构的高孔隙率提高了染料在材料中的吸附。量身定制的界面/表面特性可实现更有效的质量传输和光生载流子的更高分离效率。调制的电子结构导致ZnO光学带隙变窄。同时,与碳偶联可防止ZnO受到光腐蚀。我们的方法强调了碳在宽带隙氧化物材料的缺陷工程中作为结构导向和稳定剂以及杂原子的作用。多元混合结构的合理材料设计也为具有优异性能和耐用性的非均相光催化剂材料的发展提供了指导性见解。提出的工程策略将是制备具有高孔隙率和可见光驱动的光催化性能的3D碳网络支撑的纳米材料的有前途的方法。我们的方法强调了碳在宽带隙氧化物材料的缺陷工程中作为结构导向和稳定剂以及杂原子的作用。多元混合结构的合理材料设计也为具有优异性能和耐用性的非均相光催化剂材料的发展提供了指导性见解。提出的工程策略将是制备具有高孔隙率和可见光驱动的光催化性能的3D碳网络支撑的纳米材料的有前途的方法。我们的方法强调了碳在宽带隙氧化物材料的缺陷工程中作为结构导向和稳定剂以及杂原子的作用。多元混合结构的合理材料设计也为具有优异性能和耐用性的非均相光催化剂材料的发展提供了指导性见解。提出的工程策略将是制备具有高孔隙率和可见光驱动的光催化性能的3D碳网络支撑的纳米材料的有前途的方法。多元混合结构的合理材料设计也为具有优异性能和耐用性的非均相光催化剂材料的发展提供了指导性见解。提出的工程策略将是制备具有高孔隙率和可见光驱动的光催化性能的3D碳网络支撑的纳米材料的有前途的方法。多元混合结构的合理材料设计也为具有优异性能和耐用性的非均相光催化剂材料的发展提供了指导性见解。提出的工程策略将是制备具有高孔隙率和可见光驱动的光催化性能的以3D碳网络为载体的纳米材料的有前途的方法。

更新日期:2020-12-10
down
wechat
bug