当前位置: X-MOL 学术Adv. Space Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Application of satellite observations to study the changes of hypoxic conditions in near-bottom water in the western part of Peter the Great Bay (the Sea of Japan)
Advances in Space Research ( IF 2.6 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.asr.2020.11.008
Elena A. Shtraikhert , Sergey P. Zakharkov , Alexander Yu. Lazaryuk

Abstract In this paper we explore the possibilities of applying satellite ocean colour (OC) observations and SST to study the changes in the conditions of hypoxia in the near-bottom water in the western part of Peter the Great Bay. Near-bottom water hypoxia occurs in water bodies with increased organic matter influx when the dissolved oxygen (DO) consumed at its oxidation is not restored. Consumption of most DO is usually attributed to the oxidation of organic matter formed as a result of increased algae growth during water eutrophication. Satellite data on indicators of phytoplankton (chlorophyll-a concentration (Chl) and fluorescence (FLH)) allow to analyze the spatial-temporal changes of this substation. Coloured dissolved organic matter (CDOM), non-algal particles (NAP) influence on satellite Chl estimates and also on near-bottom water hypoxia formation. This study analyzes daily, seasonal, and inter-annual changes in the distributions of indicators (Chl, FLH, the coefficients of light absorption by coloured detrital matter (aCDM) and light backscattering by suspended particles (bbp)), based on the instant satellite OC data from MODIS-Aqua. Data on the Chl, the sea surface temperature (SST) from the MODIS-Aqua, the precipitation from the TRMM satellite and the hydrometeorological stations (HMSs), the wind speed and direction from HMS “Vladivostok” are used to study the influence of hydrometeorological conditions on the Chl values. These distributions were compared with the literary information based on field observations of the hypoxia cases in the same area and with the changes in the vertical DO, Chl, temperature, salinity distribution obtained by coastal expeditions in October-November, 2010 and February-March, 2011. Significant interrelations within 95% confidence level between the satellite Chl, FLH values calculated at the MUMM atmospheric correction and in situ Chl values obtained in the autumn of 2010 were reached separately for the cases with winds of northern and southern directions with the correlation coefficients of 0.71, 0.48 and 0.49, 0.71, respectively. Significant dependences of Chl on SST and Chl on wind speed explained by the influence of continental runoff and water ventilation were obtained. Therefore, the changes of Chl reflect the changes of hypoxic conditions in the near-bottom water. In Amursky Bay the onset of hypoxia was at the Chl and SST values equal to 4 mg m-3 and 13 °C (↑ - at increasing SST); near Furugelm Island it was at 1.6 mg m-3 and 25 °C (↑), 1 mg m-3 and 21 °C (↓). The difference in the Chl values was reflected in the hypoxia onset timings that were the beginning of June (2011), August (2013), and September (2014), respectively. The water flow from the eastern coast of Amursky Bay in early August of 2013 recorded from the OC and SST satellite imagers appeared in an additional hypoxic zone. Decreased OC characteristics in the runoff of the Razdolnaya River in August-September of 2014 were a sign of hypoxia at its mouth. Near Furugelm Island the hypoxia destruction (increase in the DO level from 1 to 4.5 ml liter-1) was observed at the Chl of 0.9 mg m-3 and SST = 18 °C (↓). At the autumn maximum of Chl equal to 1.7 mg m-3 and SST = 4 °C (↓) in mid-November the DO level here increased to 8 ml liter-1. In Amursky Bay, short-term destructions / weakening of hypoxia manifested themselves in sharp increases of Chl. At that, the ratio between the Chl value and the approximation level was equal to 2 and higher for SST equal to 22-25 °C (↑), to 0.9 and higher for SST equal to 5-13 °C (↓). With the water stratification destruction in temperature and the noticeable weakening of the stratification in salinity (mid-November), the hypoxia destructed (the DO level increased from 2 to 6 ml liter-1). In this case, Chl and SST were about 3 mg m-3 and 5 °C (↓).

中文翻译:

应用卫星观测研究彼得大帝湾西部(日本海)近底水缺氧条件变化

摘要 在本文中,我们探索了应用卫星海洋颜色(OC)观测和 SST 来研究彼得大帝湾西部近底水缺氧条件变化的可能性。当氧化所消耗的溶解氧 (DO) 未恢复时,有机物流入增加的水体中会发生近底水缺氧。大多数溶解氧的消耗通常归因于水富营养化过程中藻类生长增加而形成的有机物的氧化。浮游植物指标(叶绿素-a 浓度(Chl)和荧光(FLH))的卫星数据可以分析该变电站的时空变化。有色溶解有机物(CDOM),非藻颗粒 (NAP) 对卫星 Chl 估计以及近底水缺氧形成的影响。本研究基于即时卫星,分析了指标(Chl、FLH、有色碎屑的光吸收系数 (aCDM) 和悬浮颗粒的光背向散射 (bbp))分布的每日、季节性和年际变化MODIS-Aqua 的 OC 数据。来自 MODIS-Aqua 的 Chl、海面温度 (SST)、来自 TRMM 卫星和水文气象站 (HMS) 的降水、来自 HMS“符拉迪沃斯托克”的风速和风向的数据用于研究水文气象的影响。 Chl 值的条件。将这些分布与基于同一地区缺氧情况现场观察的文献资料以及2010年10月-11月和2-3月沿海考察获得的垂直DO、Chl、温度、盐度分布的变化进行了比较, 2011. MUMM大气校正计算得到的卫星Chl、FLH值与2010年秋季原位Chl值在95%置信水平内显着相关,分别针对北风和南风的情况与相关系数达成分别为 0.71、0.48 和 0.49、0.71。获得了由大陆径流和水通风的影响解释的 Chl 对 SST 和 Chl 对风速的显着依赖性。所以,Chl的变化反映了近底水缺氧条件的变化。在阿穆尔斯基湾,缺氧开始于 Chl 和 SST 值等于 4 mg m-3 和 13 °C(↑ - 在 SST 增加时);Furugelm 岛附近的浓度为 1.6 mg m-3 和 25 °C (↑)、1 mg m-3 和 21 °C (↓)。Chl 值的差异反映在缺氧开始时间分别为 6 月初(2011 年)、8 月(2013 年)和 9 月(2014 年)。OC 和 SST 卫星成像仪记录的 2013 年 8 月上旬阿穆尔斯基湾东海岸的水流出现在一个额外的缺氧区。2014 年 8 月至 9 月拉兹多尔纳亚河径流中 OC 特征的降低是其口部缺氧的标志。Furugelm岛附近缺氧破坏(溶解氧水平从1增加到4。在 0.9 mg m-3 的 Chl 和 SST = 18 °C (↓) 下观察到 5 ml l l-1)。在 11 月中旬 Chl 的秋季最大值等于 1.7 mg m-3 和 SST = 4 °C (↓) 时,此处的 DO 水平增加到 8 ml l l-1。在阿穆尔斯基湾,缺氧的短期破坏/减弱表现为 Chl 的急剧增加。此时,对于等于 22-25 °C (↑) 的 SST,Chl 值与近似水平之间的比率等于 2 和更高,对于等于 5-13 °C (↓) 的 SST,Chl 值和近似值之间的比率等于 2 和更高。随着温度的水分层破坏和盐度分层的明显减弱(11月中旬),缺氧被破坏(溶解氧水平从2升至6毫升升-1)。在这种情况下,Chl 和 SST 约为 3 mg m-3 和 5 °C (↓)。7 mg m-3 和 SST = 4 °C (↓) 在 11 月中旬,这里的 DO 水平增加到 8 ml l l-1。在阿穆尔斯基湾,缺氧的短期破坏/减弱表现为 Chl 的急剧增加。此时,对于等于 22-25 °C (↑) 的 SST,Chl 值与近似水平之间的比率等于 2 和更高,对于等于 5-13 °C (↓) 的 SST,Chl 值和近似值之间的比率等于 2 和更高。随着温度的水分层破坏和盐度分层的明显减弱(11月中旬),缺氧被破坏(溶解氧水平从2升至6毫升升-1)。在这种情况下,Chl 和 SST 约为 3 mg m-3 和 5 °C (↓)。7 mg m-3 和 SST = 4 °C (↓) 在 11 月中旬,这里的溶解氧水平增加到 8 ml l l-1。在阿穆尔斯基湾,缺氧的短期破坏/减弱表现为 Chl 的急剧增加。此时,对于等于 22-25 °C (↑) 的 SST,Chl 值与近似水平之间的比率等于 2 和更高,对于等于 5-13 °C (↓) 的 SST,Chl 值和近似值之间的比率等于 2 和更高。随着温度的水分层破坏和盐度分层的明显减弱(11月中旬),缺氧被破坏(溶解氧水平从2升至6毫升升-1)。在这种情况下,Chl 和 SST 约为 3 mg m-3 和 5 °C (↓)。Chl 值与近似水平之间的比率对于等于 22-25 °C (↑) 的 SST 等于 2 和更高,对于等于 5-13 °C (↓) 的 SST,Chl 值和更高的比率等于 0.9 和更高。随着温度的水分层破坏和盐度分层的明显减弱(11月中旬),缺氧被破坏(溶解氧水平从2升至6毫升升-1)。在这种情况下,Chl 和 SST 约为 3 mg m-3 和 5 °C (↓)。对于等于 22-25 °C (↑) 的 SST,Chl 值与近似水平之间的比率等于 2 和更高,对于等于 5-13 °C (↓) 的 SST,Chl 值和近似值之间的比率等于或高于 0.9。随着温度的水分层破坏和盐度分层的明显减弱(11月中旬),缺氧被破坏(DO水平从2升至6毫升升-1)。在这种情况下,Chl 和 SST 约为 3 mg m-3 和 5 °C (↓)。
更新日期:2021-02-01
down
wechat
bug