当前位置: X-MOL 学术Front. Energy Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biochar-Terracotta Conductive Composites: New Design for Bioelectrochemical Systems
Frontiers in Energy Research ( IF 2.6 ) Pub Date : 2020-11-02 , DOI: 10.3389/fenrg.2020.581106
Pierangela Cristiani , Andrea Goglio , Stefania Marzorati , Stephanie Fest-Santini , Andrea Schievano

Research in the field of bioelectrochemical systems is addressing the need to improve components and reduce their costs in the perspective of their large-scale application. In this view, innovative solid separators of electrodes, made of biochar and terracotta, are investigated. Biochar-based composites are produced from giant cane (Arundo Donax L.). Two different types of composite are used in this experiment: composite A, produced by pyrolysis of crushed chipping of A.donax L. mixed clay; and composite B, produced by pyrolysis of already-pyrolyzed giant cane (biochar) mixed with clay. Electrical resistivity, electrical capacity, porosity, water retention, and water leaching of the two composites types (A and B) with 1, 5, 10, 15, 20, and 30 mass percentages of carbon (w/w) are characterized and compared. Less than 1 kΩ cm of electrical resistance is obtained for composite A with a carbon content greater than 10%, while physical and electrical performances of composite B do not significantly change. SEM micrographs and 3D microcomputed tomography of different composite materials are provided, demonstrating a different matrix structure of carbon in the terracotta matrix. The possibility of suitably decreasing electric resistance and increasing water retention/leaching of composite A opens the way for a new class of resistive materials that can be simultaneously used as electrolytic separators and as external electric circuits, allowing a compact microbial fuel cell design. A proof of concept of such an MFC design was provided for different tested composites. Although all the anolytes become anaerobic, only the MFCs equipped with the composite A30% were able to produce power, reaching the maximum power peak in correspondence to resistance of about 1 kΩ. The low, but significant, produced power (about 40 mW m−2, cathode area) confirm that the proposed solution is particularly suitable for nutrient recovery and environment pollution bioremediation, where energy harvesting is not requested.



中文翻译:

Biochar-Terracotta导电复合材料:生物电化学系统的新设计

从生物电化学系统的大规模应用的角度出发,其在生物电化学系统领域的研究正致力于改善其组件并降低其成本的需求。以这种观点,研究了由生物炭和兵马俑制成的创新的电极固体分离器。基于生物炭的复合材料由巨型甘蔗制成(Arundo Donax L)。本实验中使用两种不同类型的复合材料:复合材料A,是通过热解碎屑而产生的。多纳木。混合粘土 以及复合B,是通过将已经热解的巨型甘蔗(生物炭)与粘土混合热解而制得的。表征并比较了具有1,5%,10%,15%,15%,20%和30%质量百分比碳(w / w)的两种复合材料类型(A和B)的电阻率,电容,孔隙率,保水率和浸出水率。对于碳含量大于10%的复合材料A,获得的电阻小于1kΩcm,而复合材料B的物理和电气性能没有明显变化。提供了不同复合材料的SEM显微照片和3D显微计算机断层扫描,表明了兵马俑基质中碳的不同基质结构。适当降低电阻并增加复合材料A的保水/浸出的可能性为新型电阻材料开辟了道路,该材料可同时用作电解隔板和外部电路,从而实现紧凑的微生物燃料电池设计。为不同的测试复合材料提供了这种MFC设计的概念证明。尽管所有的阳极电解液都变成厌氧的,但只有配备了复合A30%的MFC才能够产生功率,达到最大功率峰值,对应于约1kΩ的电阻。低但重要的产生功率(约40 mW m 为不同的测试复合材料提供了这种MFC设计的概念证明。尽管所有的阳极电解液都变成厌氧的,但只有配备了复合A30%的MFC才能够产生功率,达到最大功率峰值,对应于约1kΩ的电阻。低但重要的产生功率(约40 mW m 为不同的测试复合材料提供了这种MFC设计的概念证明。尽管所有的阳极电解液都变成厌氧的,但只有配备了复合A30%的MFC才能够产生功率,达到最大功率峰值,对应于约1kΩ的电阻。低但重要的产生功率(约40 mW m−2,阴极面积)确认,提出的解决方案特别适合不需要能量收集的营养物回收和环境污染生物修复。

更新日期:2020-12-03
down
wechat
bug