当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermochemical lithosphere differentiation and the origin of cratonic mantle
Nature ( IF 50.5 ) Pub Date : 2020-12-02 , DOI: 10.1038/s41586-020-2976-3
Fabio A. Capitanio , Oliver Nebel , Peter A. Cawood

Cratons record the early history of continental lithosphere formation, yet how they became the most enduring part of the lithosphere on Earth remains unknown1. Here we propose a mechanism for the formation of large volumes of melt-depleted cratonic lithospheric mantle (CLM) and its evolution to stable cratons. Numerical models show large decompression melting of a hot, early Earth mantle beneath a stretching lithosphere, where melt extraction leaves large volumes of depleted mantle at depth. The dehydrated, stiffer mantle resists further deformation, forcing strain migration and cooling, thereby assimilating depleted mantle into the lithosphere. The negative feedback between strain localization and stiffening sustains long-term diffused extension and emplacement of large amounts of depleted CLM. The formation of CLM at low pressure and its deeper re-equilibration reproduces the evolution of Archaean lithosphere constrained by depth-temperature conditions1,2, whereas large degrees of depletion3,4 and melt volumes5 in Archaean cratons are best matched by models with lower lithospheric strength. Under these conditions, which are otherwise viable for plate tectonics6,7, thermochemical differentiation effectively prevents yielding and formation of margins: rifting and lithosphere subduction are short lived and embedded in the cooling CLM as relict structures, reproducing the recycling and reworking environments that are found in Archaean cratons8,9. Although they undergo major melting and extensive recycling during an early stage lasting approximately 500 million years, the modelled lithospheres progressively differentiate and stabilize, and then recycling and reworking become episodic. Early major melting and recycling events explain the production and loss of primordial Hadean lithosphere and crust10, whereas later stabilization and episodic reworking provides a context for the creation of continental cratons in the Archaean era4,8.

中文翻译:

热化学岩石圈分异与克拉通地幔的起源

克拉通记录了大陆岩石圈形成的早期历史,但它们如何成为地球上岩石圈最持久的部分仍然未知1。在这里,我们提出了一种形成大量熔体耗尽的克拉通岩石圈地幔(CLM)及其向稳定克拉通演化的机制。数值模型显示,在伸展的岩石圈下,早期的热地幔发生大规模减压熔融,其中熔体提取在深处留下大量耗尽的地幔。脱水、坚硬的地幔抵抗进一步变形,迫使应变迁移和冷却,从而将枯竭的地幔同化到岩石圈中。应变局部化和硬化之间的负反馈维持了大量耗尽的 CLM 的长期扩散扩展和就位。低压下 CLM 的形成及其更深的再平衡再现了受深度-温度条件 1,2 约束的太古代岩石圈的演化,而太古代克拉通中大程度的消耗 3,4 和熔体体积 5 与岩石圈强度较低的模型最匹配. 在这些条件下,对于板块构造来说是可行的 6,7,热化学分化有效地防止了边缘的屈服和形成:裂谷和岩石圈俯冲是短暂的,并作为残余结构嵌入冷却的 CLM 中,再现了发现的回收和改造环境在太古代克拉通 8,9。尽管它们在持续约 5 亿年的早期阶段经历了大规模的融化和广泛的再循环,但模拟的岩石圈逐渐分化和稳定,然后回收和返工成为偶发事件。早期的主要熔融和再循环事件解释了原始冥界岩石圈和地壳的产生和消失 10,而后来的稳定和偶发性改造为太古代时代大陆克拉通的形成提供了背景 4,8。
更新日期:2020-12-02
down
wechat
bug