当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental investigation on the effect of hole diameter on the leading edge region film cooling of a twist turbine blade under rotation conditions
Applied Thermal Engineering ( IF 6.4 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.applthermaleng.2020.116386
Hai-wang Li , Da-wei Zhang , Feng Han , Hong Guo , Xiao-feng Ding

Film cooling performance on the twist turbine blade leading edge (LE) model has been experimentally investigated employing the thermochromic liquid crystal (TLC) technology under rotation conditions. The novelty of this paper is the earlier study on the effect of film hole diameter (d = 0.4 mm and 0.5 mm) on the LE region of a rotating twist blade. The effects of blowing ratio (M) and density ratio (DR) were also considered. M ranged from 0.5 to 2.0 when DR = 1.56 and M ranged from 0.5 to 1.25 when DR = 1.04. The whole experiment was conducted at the rotating speed of 574 r/min with the Reynolds number of 63,400. Results show that the film hole diameter of leading edge has a significant effect on the spanwise average film cooling effectiveness. The spanwise effectiveness provided by the larger DR (1.56) increases with increasing hole diameter in the whole range of −4.3d to 3.75d at M = 0.5, 1.0 and 1.5. When DR = 1.56, the spanwise effectiveness increases monotonically with increasing blowing ratio in the whole range of −4.3d to 3.75d under the condition of d = 0.4 mm case, and it increases first and then descends with increasing blowing ratio in the whole range except −3.3d to −0.5d with the best M = 1.5 under the condition of d = 0.5 mm case. The area average film cooling effectiveness provided by the larger DR (1.56) is higher than that provided by the smaller DR (1.04) when M = 0.5 and 1.0 for the d = 0.5 mm case. More results on the influence of hole diameter, blowing ratio and density ratio are shown in this paper.



中文翻译:

孔径对旋转条件下涡轮叶片前缘区域薄膜冷却影响的实验研究

已经在旋转条件下采用热致变色液晶(TLC)技术对扭转涡轮叶片前缘(LE)模型上的薄膜冷却性能进行了实验研究。本文的新颖性是对膜孔直径(d = 0.4 mm和0.5 mm)对旋转扭曲叶片LE区域的影响的较早研究。还考虑了吹风比(M)和密度比(DR)的影响。当DR = 1.56时,M的范围为0.5至2.0;当DR = 1.04时,M的范围为0.5至1.25。整个实验在574 r / min的转速下进行,雷诺数为63,400。结果表明,前缘的膜孔直径对翼展方向平均膜冷却效率有显着影响。较大的DR(1。56)在M = 0.5、1.0和1.5时在-4.3d至3.75d的整个范围内随着孔径的增加而增加。当DR = 1.56时,在d = 0.4 mm的情况下,翼展方向效率在-4.3d至3.75d的整个范围内随鼓风比的增加而单调增加,然后在整个范围内随鼓风比的增加而先增大然后减小在d = 0.5 mm的情况下,除了-3.3d至-0.5d之外,最好的M = 1.5。当M = 0.5和d = 0.5 mm的情况下为1.0时,较大的DR(1.56)所提供的面积平均薄膜冷却效率高于较小的DR(1.04)。本文显示了更多关于孔径,吹塑比和密度比的影响的结果。在d = 0.4 mm的情况下,翼展方向有效性在-4.3d至3.75d的整个范围内随鼓风比的增加而单调增加,并且在整个范围内,除了-3.3d到-33d为止,其先增大后减小。在d = 0.5 mm情况下,最佳M = 1.5时为-0.5d。当M = 0.5和d = 0.5 mm的情况下为1.0时,较大的DR(1.56)所提供的面积平均薄膜冷却效率高于较小的DR(1.04)。本文显示了更多关于孔径,吹塑比和密度比的影响的结果。在d = 0.4 mm的情况下,翼展方向有效性在-4.3d至3.75d的整个范围内随鼓风比的增加而单调增加,并且在整个范围内,除了-3.3d到-33d为止,其先增大后减小。在d = 0.5 mm情况下,最佳M = 1.5时为-0.5d。当M = 0.5和d = 0.5 mm的情况下为1.0时,较大的DR(1.56)所提供的面积平均薄膜冷却效率高于较小的DR(1.04)。本文显示了更多关于孔径,吹塑比和密度比的影响的结果。在d = 0.5mm的情况下为5。当M = 0.5和d = 0.5 mm的情况下为1.0时,较大的DR(1.56)所提供的面积平均薄膜冷却效率高于较小的DR(1.04)。本文显示了更多关于孔径,吹塑比和密度比的影响的结果。在d = 0.5mm的情况下为5。当M = 0.5和d = 0.5 mm的情况下为1.0时,较大的DR(1.56)所提供的面积平均薄膜冷却效率高于较小的DR(1.04)。本文显示了更多关于孔径,吹塑比和密度比的影响的结果。

更新日期:2020-12-07
down
wechat
bug