当前位置: X-MOL 学术Neural Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Conductance-Based Adaptive Exponential Integrate-and-Fire Model
Neural Computation ( IF 2.9 ) Pub Date : 2021-01-01 , DOI: 10.1162/neco_a_01342
Tomasz Górski 1 , Damien Depannemaecker 1 , Alain Destexhe 1
Affiliation  

The intrinsic electrophysiological properties of single neurons can be described by a broad spectrum of models, from realistic Hodgkin-Huxley-type models with numerous detailed mechanisms to the phenomenological models. The adaptive exponential integrate-and-fire (AdEx) model has emerged as a convenient middle-ground model. With a low computational cost but keeping biophysical interpretation of the parameters, it has been extensively used for simulations of large neural networks. However, because of its current-based adaptation, it can generate unrealistic behaviors. We show the limitations of the AdEx model, and to avoid them, we introduce the conductance-based adaptive exponential integrate-and-fire model (CAdEx). We give an analysis of the dynamics of the CAdEx model and show the variety of firing patterns it can produce. We propose the CAdEx model as a richer alternative to perform network simulations with simplified models reproducing neuronal intrinsic properties.

中文翻译:

基于电导的自适应指数积分和点火模型

单个神经元的内在电生理特性可以通过广泛的模型来描述,从具有众多详细机制的现实霍奇金 - 赫胥黎型模型到现象学模型。自适应指数积分发射 (AdEx) 模型已成为一种方便的中间模型。由于计算成本低但保持参数的生物物理解释,它已被广泛用于大型神经网络的模拟。然而,由于其基于电流的适应,它可能会产生不切实际的行为。我们展示了 AdEx 模型的局限性,为了避免这些局限性,我们引入了基于电导的自适应指数积分和发射模型 (CAdEx)。我们对 CAdEx 模型的动力学进行了分析,并展示了它可以产生的各种发射模式。
更新日期:2021-01-01
down
wechat
bug