当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Immobilizing Polysulfide by In Situ Topochemical Oxidation Derivative TiC@Carbon‐Included TiO2 Core–Shell Sulfur Hosts for Advanced Lithium–Sulfur Batteries
Small ( IF 13.0 ) Pub Date : 2020-11-30 , DOI: 10.1002/smll.202005998
Xiaoqing Zhang 1 , Wei Yuan 1 , Yang Yang 1 , Yu Chen 2 , Zhenghua Tang 2 , Chun Wang 1 , Yuhang Yuan 1 , Yintong Ye 1 , Yaopeng Wu 1 , Yong Tang 1
Affiliation  

The performance of lithium–sulfur (Li–S) batteries is greatly hindered by the notorious shuttle effect of lithium polysulfides (LiPSs). To address this issue, in situ topochemical oxidation derivative TiC@carbon‐included TiO2 (TiC@C‐TiO2) core–shell composite is designed and proposed as a multifunctional sulfur host, which integrates the merits of conductive TiC core to facilitate the redox reaction kinetics of sulfur species, and porous C‐TiO2 shell to suppress the dissolution and shuttling of LiPSs through chemisorption. A unique dual chemical mediation mechanism is demonstrated for the proposed TiC@C‐TiO2 composite that synergistically entraps LiPSs through thiosulfate/polythionate conversion coupled with strong polar–polar interaction. The morphological characterization reveals that the TiC@C‐TiO2‐based cathode can well regulate the distribution of electrode materials to retard their accumulation inside the electrode, ensuring effective contact between the active materials and electrolyte. Based on its unique function and structure, the cathode delivers an improved capacity of 1256 mAh g−1 at 0.2C, a remarkable rate capability of 643 mAh g−1, and an ultralow capacity decay rate of 0.065% per cycle at 2C over 900 cycles. This work not only demonstrates a dual chemical mediation mechanism to immobilize LiPSs, but also provides a universal strategy to construct multifunctional sulfur hosts for advanced Li–S batteries.

中文翻译:

用于高级锂硫电池的原位拓扑化学氧化衍生物TiC @含碳的TiO2核壳硫主体固定化多硫化物

多硫化锂(LiPSs)的臭名昭著的穿梭效应极大地阻碍了锂硫(Li–S)电池的性能。为了解决这个问题,设计并提出了原位拓扑化学氧化衍生物含TiC @碳的TiO 2(TiC @ C‐TiO 2)核-壳复合材料,它是一种多功能的硫基质,集导电TiC核的优点于一体硫物种的氧化还原反应动力学,以及多孔C-TiO 2壳,通过化学吸附来抑制LiPS的溶解和穿梭。对拟议的TiC @ C‐TiO 2展示了独特的双重化学介导机制通过硫代硫酸盐/多硫代硫酸盐转化以及强极性相互作用而协同捕获LiPS的复合材料。形态特征表明,基于TiC @ C‐TiO 2的阴极可以很好地调节电极材料的分布,从而阻止其在电极内的积累,从而确保活性材料与电解质之间的有效接触。基于其独特的功能和结构,该阴极在0.2C时可提供1256 mAh g -1的改进容量,显着的643 mAh g -1的倍率能力,并且在900个周期内在2C下每个周期的超低容量衰减率为0.065%。这项工作不仅证明了固定化LiPS的双重化学介导机制,而且为构建用于高级Li-S电池的多功能硫磺基质提供了一种通用策略。
更新日期:2020-12-28
down
wechat
bug