当前位置: X-MOL 学术Urban Clim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Probability of occurrence of extreme precipitation events and natural disasters in the city of Natal, Brazil
Urban Climate ( IF 6.0 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.uclim.2020.100753
Daniele Tôrres Rodrigues , Weber Andrade Gonçalves , Maria Helena Constantino Spyrides , Lara de Melo Barbosa Andrade , Diego Oliveira de Souza , Paula Andressa Alves de Araujo , Any Caroline Nunes da Silva , Cláudio Moisés Santos e Silva

This study aimed at estimating the probability of occurrence and return period of extreme daily precipitation events, associating them with natural disasters that occurred in the city of Natal, Northeast Brazil. For this purpose, generalized extreme value (GEV) distribution models were adjusted to the daily extreme precipitation data observed for a period of 31 years (1984–2014). The results indicated that the intensity of expected extreme precipitation depends on the month of its occurrence. October, November and December have low probabilities of rainfall, while April, May, June and July stand out as the period when the highest intensities of extreme precipitation are expected. On average, the daily accumulated precipitation of the days when natural disaster events occurred in Natal was 69.2 mm. The probability of rainfall greater than 60 mm/day varied between 37.7% and 74.8% between March and July. Furthermore, pluvial flooding was the type of natural disaster occurring most frequently in the city. This information can be useful to support the formulation of public policies in terms of planning, adaptation and mitigation of urban risks caused by extreme precipitation events.



中文翻译:

巴西纳塔尔市发生极端降水事件和自然灾害的可能性

这项研究旨在估计极端每日降水事件的发生和恢复期的可能性,并将其与巴西东北部纳塔尔市发生的自然灾害联系起来。为此,将广义极值(GEV)分布模型调整为31年(1984-2014年)观测到的每日极端降水数据。结果表明,预期极端降水的强度取决于发生月份。10月,11月和12月的降雨概率较低,而4月,5月,6月和7月则是极端降雨强度最高的时期。平均而言,纳塔尔(Natal)发生自然灾害事件的当天的每日累积降雨量为69.2 mm。在三月至七月期间,每天降雨量超过60毫米的概率在37.7%和74.8%之间变化。此外,小洪水是城市中最常见的自然灾害类型。这些信息对于在规划,适应和缓解极端降雨事件引起的城市风险方面,可支持制定公共政策。

更新日期:2020-12-01
down
wechat
bug