当前位置: X-MOL 学术Compos. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The higher compressive strength (TiB+La2O3)/Ti–Ni shape memory alloy composite with the larger recoverable strain
Composites Communications ( IF 6.5 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.coco.2020.100583
Xiaoyang Yi , Guijuan Shen , Xianglong Meng , Haizhen Wang , Zhiyong Gao , Wei Cai , Liancheng Zhao

Abstract In the present study, in-situ TiB whiskers and La2O3 particles showing a network structure were designed and introduced into Ti–Ni composites. With LaB6 content increasing, the amount of in-situ TiB whiskers and La2O3 particles also increases. In addition to the in-situ reinforcements, Ti2Ni second phase also precipitates. The B19´⇌B2 martensitic transformation can be detected in all Ti–Ni composites, irrespective of LaB6 contents. It should be noted that R-phase transformation also appears for Ti–Ni composite added 0.5wt.%LaB6. The martensitic transformation temperatures firstly decrease and then increase with the increased LaB6 content, which can be attributed to the changing of matrix composition. As LaB6 content increases from 0wt.% to 0.97wt.%, the evolution of network structure is as follows: quasi-continuous network structure → continuous network structure → quasi-continuous network structure. In proportion, the mechanical properties of Ti–Ni composites firstly decrease and then increase. The superior mechanical properties with the highest fracture strain of 35.9% and the largest fracture stress of 2476 MPa can be obtained in Ti–Ni composite with adding 0.97wt.%LaB6, which is due to the larger capacity of bearing the loading for reinforcements showing a quasi-continuous network structure. Meanwhile, at the pre-strain of 7%, the maximum strain recovery ratio of Ti–Ni composite is 88.34%.

中文翻译:

更高的抗压强度 (TiB+La2O3)/Ti-Ni 形状记忆合金复合材料具有更大的可恢复应变

摘要 在本研究中,设计了具有网络结构的原位 TiB 晶须和 La2O3 颗粒并将其引入 Ti-Ni 复合材料中。随着 LaB6 含量的增加,原位 TiB 晶须和 La2O3 颗粒的数量也增加。除了原位增强,Ti2Ni 第二相也析出。B19´⇌B2 马氏体转变可以在所有 Ti-Ni 复合材料中检测到,而与 LaB6 含量无关。需要注意的是,添加 0.5wt.%LaB6 的 Ti-Ni 复合材料也会出现 R 相转变。随着LaB6含量的增加,马氏体转变温度先降低后升高,这可以归因于基体成分的变化。随着 LaB6 含量从 0wt.% 增加到 0.97wt.%,网络结构演变如下:准连续网络结构→连续网络结构→准连续网络结构。成比例地,Ti-Ni 复合材料的力学性能先降低后升高。添加 0.97wt.% LaB6 的 Ti-Ni 复合材料可获得最高断裂应变 35.9% 和最大断裂应力 2476 MPa 的优异力学性能,这是由于增强材料承受载荷的能力更大准连续的网络结构。同时,在 7% 的预应变下,Ti-Ni 复合材料的最大应变恢复率为 88.34%。添加 0.97wt.%LaB6 的 Ti-Ni 复合材料可获得 9% 和 2476 MPa 的最大断裂应力,这是由于增强材料的承载能力更大,呈现出准连续的网络结构。同时,在 7% 的预应变下,Ti-Ni 复合材料的最大应变恢复率为 88.34%。添加 0.97wt.%LaB6 的 Ti-Ni 复合材料可获得 9% 和 2476 MPa 的最大断裂应力,这是由于增强材料的承载能力更大,呈现出准连续的网络结构。同时,在 7% 的预应变下,Ti-Ni 复合材料的最大应变恢复率为 88.34%。
更新日期:2021-02-01
down
wechat
bug