当前位置: X-MOL 学术Wave Motion › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Delta-shaped basis functions-pseudospectral method for numerical investigation of nonlinear generalized equal width equation in shallow water waves
Wave Motion ( IF 2.4 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.wavemoti.2020.102687
Ömer Oruç

Abstract In this work, we examine generalized equal width (GEW) equation which is a highly nonlinear partial differential equation and describes plasma waves and shallow water waves. Nonlinearity of the equation is tackled by a linearization technique and finite difference approach is utilized for time derivatives. For spatial derivatives we first introduce delta-shaped basis functions which are relatively less studied in literature. Then, by using delta-shaped basis functions, pseudospectral differentiation matrices are constructed for spatial derivatives. Therefore combining finite difference approach for time derivatives and pseudospectral differentiation matrices for spatial derivatives, we obtain a system of linear equations. Solution of this system of equations gives nodal values of numerical solution of the GEW equation for each time step. Stability of the proposed method is given by using linear matrix stability analysis. To measure performance of the proposed method, four classic test problems are chosen namely the propagation of a single solitary wave, interaction of two solitary waves, Maxwellian initial condition and collision of solitons. Also, conservations of mass, momentum and energy are monitored during simulations. The results of numerical computations are compared with exact results if available and with previous studies in the literature such as Petrov–Galerkin, B-spline Galerkin and some collocation methods. From the comparison we can deduce that the proposed method gives reliable and accurate results in less computational cost.

中文翻译:

浅水波非线性广义等宽方程数值研究的Delta形基函数-伪谱法

摘要 在这项工作中,我们研究了广义等宽 (GEW) 方程,它是一个高度非线性的偏微分方程,描述了等离子体波和浅水波。方程的非线性通过线性化技术解决,有限差分方法用于时间导数。对于空间导数,我们首先介绍文献中研究相对较少的 delta 形基函数。然后,通过使用三角形基函数,为空间导数构建伪谱微分矩阵。因此,结合时间导数的有限差分方法和空间导数的伪谱微分矩阵,我们得到了一个线性方程组。该方程组的解给出了每个时间步长的 GEW 方程数值解的节点值。通过使用线性矩阵稳定性分析给出了所提出方法的稳定性。为了测量所提出方法的性能,选择了四个经典测试问题,即单个孤立波的传播、两个孤立波的相互作用、麦克斯韦初始条件和孤子的碰撞。此外,在模拟过程中还监测质量、动量和能量守恒。将数值计算的结果与精确结果(如果有)以及文献中的先前研究(如 Petrov-Galerkin、B-spline Galerkin 和一些搭配方法)进行比较。从比较中我们可以推断出,所提出的方法以较少的计算成本提供了可靠和准确的结果。选择了四个经典的测试问题,即单个孤立波的传播、两个孤立波的相互作用、麦克斯韦初始条件和孤子的碰撞。此外,在模拟过程中还监测质量、动量和能量守恒。将数值计算的结果与精确结果(如果有)以及文献中的先前研究(如 Petrov-Galerkin、B-spline Galerkin 和一些搭配方法)进行比较。从比较中我们可以推断出,所提出的方法以较少的计算成本提供了可靠和准确的结果。选择了四个经典的测试问题,即单个孤立波的传播、两个孤立波的相互作用、麦克斯韦初始条件和孤子的碰撞。此外,在模拟过程中还监测质量、动量和能量守恒。将数值计算的结果与精确结果(如果有)以及文献中的先前研究(如 Petrov-Galerkin、B-spline Galerkin 和一些搭配方法)进行比较。从比较中我们可以推断出,所提出的方法以较少的计算成本提供了可靠和准确的结果。将数值计算的结果与精确结果(如果有)以及文献中的先前研究(如 Petrov-Galerkin、B-spline Galerkin 和一些搭配方法)进行比较。从比较中我们可以推断出,所提出的方法以较少的计算成本提供了可靠和准确的结果。将数值计算的结果与精确结果(如果有)以及文献中的先前研究(如 Petrov-Galerkin、B-spline Galerkin 和一些搭配方法)进行比较。从比较中我们可以推断出,所提出的方法以较少的计算成本提供了可靠和准确的结果。
更新日期:2021-03-01
down
wechat
bug